SCHEME OF STUDIES DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING (C-20)

			V Semester Schen	ne of St	udies ·	<u>CURR</u> Diplon	<u>ICULUM</u> na in El	<u>1 STRU(</u> ectrical	<u>CTURE</u> & Elec	tronic	s Engi	neering	[C-20]						
vay	y/ g aent	Course Code	Pathway Title	H	ours p emest	er er	ntact	its	CI Mai	E 'ks	SE Ma (The	E-1 arks eory)	SEE Mai (Pract	-2 rk tical)	larks	ks for ng ng CIE s)	ned	Point	and A
Pathv	Course Categor Teachin Departn			L	Т	Р	Total co hrs	Cred	Max	Min	Max	Min	Ma x	M in	Total M	Min Mar Passi (includii mark	Assig	Grade I	SGPA CGP
Pro	gramme Special	ization Pathy	vay					I						1	1	1			
	EE Specialization	20EE51I	Industrial Automation	104	52	312	468	24	240	96	60	24	100	40	400	160			
	pathways in emerging areas	20EE52I	Power Engineering	104	52	312	468	24	240	96	60	24	100	40	400	160			
1	Student may select any one	20EE53I	Renewable Energy	104	52	312	468	24	240	96	60	24	100	40	400	160			
	of the specializations	20EE54I	Electrical Utility Engineering	104	52	312	468	24	240	96	60	24	100	40	400	160			
Scie	nce and Resear	ch Pathway		L	Т	Р	Total	redi ts	N	CIE Iarks	•		SEE Marks						Ì
								CJ	Max		Min	Max		Min					
	BS/SC/EE Specialization	20SC51T	Paper 1-Applied Mathematics	52	26	0	78	6	50		20	50		20	100	40			
	pathway in Science and	20SC52T	Paper 2 – Applied Science	52	0	52	104	6	50		20	50		20	100	40			CGPA
2	Research (Student need to take	20RM53T	Paper 3 – Research Methodology	52	0	52	104	6	50		20	50		20	100	40			GPA & (
	all four papers in this	20TW54P	Paper 4 – Technical Writing	39	13	52	104	6	60		24	40		16	100	40			3oth S
	pathway)		Total	195	39	156	390	24	210		84	190		76	400	160			ш
Ent	epreneurship F	Pathway																	
3	ES/EE	20ET51I	Entrepreneurship and Start up	104	52	312	468	24	240		96	160		64	400	160			

L:- Lecture T:- Tutorial P:- Practical BS- Basic Science:: ES-Engineering Science:: SC: Science , I: Integrated

Note: In 5th Semester student need to select any one of the pathways consisting of 24 credits

Students can continue their higher education irrespective of the Pathway selected

			VI Semester So	cheme of Studies ·	<u>CURRICULU</u> Diploma in E	<u>M STRU</u> Electrico	<u>CTUR</u> al & El	<u>E</u> lectroni	cs Eng	jineerii	1g [C-2	20]				
hway	tegory / nt	Course	Pathway	Course		Total contact	Credits	CI Mar	E 'ks	SE Mai	E `ks	Total Marks	Min Marks for Passing	Assigned Grade	Grade	SGPA and CGPA
Pat	Course Ca Teaching Departme	Code						Max	Min	Max	Min					
		20EE61S	Specialisatio n pathway	Internship/ project	40 Hours / week Total 16 Weeks	640	16	240	96	160	64	400	160			
ship		20EE61R	Science and Research Pathway	Research project	40 Hours / week Total 16 Weeks	640	16	240	96	160	64	400	160			
Intern	ES/EE	20EE61E	Entrepreneu rship and Start up pathway	Minimum Viable Product - MVP/ Incubation/ Startup proposal	40 Hours / week Total 16 Weeks	640	16	240	96	160	64	400	160			

Note : Student shall undergo Internship/Project/research project/MVP/Incubation/Startup proposal in the same area as opted

in 5th semester pathway

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Program	Electrical & Electronics	Semester	5
	Engineering		
Course Code	20EE51I	Type of Course L:T:P	104 : 52 : 312
Course Name	Industrial Automation	Credits	24
CIE Marks	240	SEE Marks	160

Introduction:

Automation in the industrial workplace provides the advantages of improving productivity and quality while reducing errors and waste, increasing safety, and adding flexibility to the manufacturing process. In the end, industrial automation yields increased safety, reliability, and profitability. This specialisation course is taught in Boot camp mode. Boot camp are 12 weeks, intense learning sessions designed to prepare the students for the practical world – ready for either industry or becoming an entrepreneur. Student will be assisted through the course, with development-based assessments to enable progressive learning. Industrial automation course introduces Programmable Logic Controllers (PLC), Field level Instrumentation and SCADA/HMI Systems used for Industrial Automation. The students will get appropriate knowledge and exposure to configuration of Industrial Controllers and development of application programs. Also covers Interfacing with SCADA/HMI systems used for remote monitoring & control of industrial process units and machines.

Leading to the successful completion of this boot camp, students shall be equipped to either do an internship in an organisation working on Automation and Robotics or do a capstone project in the related field. After the completion of Diploma, student shall be ready to take up roles like a Programmer, Supervisor and can rise up to the level of Manager, also can become Entrepreneur in the related field and more.

Pre-requisite

Before the start of this specialisation course, student shall have prerequisite knowledge gained in the first two years on the following subjects:

1st year – Engineering Mathematics, computer Aided Engineering Graphics, Fundamentals of Electrical and Electronics Engineering and Basics of Electrical power system, Communication Skills, Statistics & Analysis, Basic IT Skills, Project Management skills and Residential wiring.

2nd year- Transformers and Alternators, Transmission and Distribution, Switchgear and Protection, Analog and Digital electronics, Electrical motors, Power electronics, Fundamentals of Automation Technology and Computer Aided Electrical Drawing.

In the third year of study, student shall be applying previous years learning along with specialised field of study into projects and real-world applications.

Course Cohort Owner

A Course Cohort Owner is a faculty from the core discipline, who is fully responsible for one specialised field of study and the cohort of students who have chosen to study that specialised field of study.

Guidelines for Cohort Owner

- 1. Each Specialized field of study is restricted to a Cohort of 20 students which could include students from other relevant programs.
- 2. One faculty from the Core Discipline shall be the Cohort Owner, who for teaching and learning in allied disciplines can work with faculty from other disciplines or industry experts.
- 3. The course shall be delivered in boot camp mode spanning over 12 weeks of study, weekly developmental assessments and culminating in a mini capstone.
- 4. The industry session shall be addressed by industry subject experts (in contact mode/online / recorded video mode) in the discipline only.
- 5. The cohort owner shall be responsible to identify experts from the relevant field and organize industry session as per schedule.
- 6. Cohort owner shall plan and accompany the cohort for any industrial visits.
- 7. Cohort owner shall maintain and document industrial assignments, weekly assessments, practices and mini project.
- 8. The cohort owner shall coordinate with faculties across programs needed for their course to ensure seamless delivery as per time table
- The cohort owner along with classroom sessions can augment or use supplementary teaching and learning opportunities including good quality online courses available on platforms like Karnataka LMS, Infosys Springboard, NPTEL, Unacademy, SWAYAM, etc.

Course outcome:

On successful completion of the course, the students will be able to:

CO1	Develop and test the PLC program for a given industrial application using simulation software.
CO2	Install, troubleshoot and maintain the PLC.
CO3	Interface VFD/servo motor with HMI and PLC to control various motor parameters.
CO4	Automate the given process and troubleshoot the system for its defects.
CO5	Interface SCADA /HMI with PLC and Control PLC from SCADA.

Department of Collegiate & Technical Education Bengaluru-560001

Detailed Course Plan

Week	C O	P 0	Days	1 st session (9 am to 1 pm)	L	Т	Р	2 ND session (1.30 pm to4.30 pm)	L	Т	Р
	1	3	1	 Introduction to industrial automation: Video on automation Why automation is required? Examples to understand industrial automation Motivation for Industrial Automation Levels of Industrial Automation Process Types of automation. What can be automated and what cannot be automated? 	3		1	 Introduction to process automation Familiarizing with process control system Video demonstration: Demonstrate the various automation processes. 	1		2
1	1	3	2	 Familiarizing and learning open loop and close loop systems with examples. Demonstrate a closed-loop feedback system with a different applications Demonstrate the different components used in process control. Demonstrate how the process control system works. 	2		2	 Video Demonstration on Automation of the beverage industry Automation of motor stator production. Automation of Transformer core The Role of PLCs in manufacturing PLC application stories 			3
	1	2,3,4	3	Advance PLC instructions Bit Logic Instructions: Standard Contacts, Immediate Contacts, NOT Instruction, Positive and Negative Transition Instructions, Output, Output Immediate, Set and Reset, Set Immediate and Reset Immediate • Normally Open	2		2	Develop a LAD (Ladder diagram) to control the stamp system. Identify and select sensors ,switches and actuators required to implement the sytem. An automatic stamp system shown in Figure 2 works as follows: When start switch is turned on, system gets ready to run. When the operator puts a box at the beginning of the conveyor (on LS1) the motor runs and conveyor moves. Upon			3

			 Normally Close NOT logic Coil Set Coil Reset Coil Negative Edge Positive Edge Demonstration of instructions Explain the five steps to PLC Program development Define the task. Define the inputs and outputs. Develop a logical sequence of operation. Develop the PLC program. Test the program. 			reaching the midpoint of the conveyor (on LS2) the conveyor motor stops. Then the stamp comes down and puts the stamp on the box. When this process is finished, the stamp goes up and conveyor moves again to the other end of the conveyor. After box reaches to end of the conveyor (on LS3), the motor stops. The system waits for the box to get and the box to be placed at the beginning of the conveyor. If start switch is turned off, the system cannot run even if there is a box on conveyor. The light on the start box indicates that the system is active whereas UP and Down lights indicate that the stamp is UP and DOWN position respectively.		
1	2,3,4	4	 To study the operation of different types of timers. Timer Instructions: On-Delay Timer, Retentive On-Delay Timer, Off-Delay Timer Counters: Count Up Counter, Count Down Counter, Count Down Counter Develop and Test a LAD (Ladder diagram)/ Functional Block Diagram(FBD) using simulation software, for the process mixer. 	2	2	Develop and Test a LAD (Ladder diagram)/ Functional Block Diagram (FBD) for the given system using simulation software. Identify and select sensors ,switches and actuators required to implement the sytem. The system to be controlled by PLC consists of two belts. If the Start button is pressed, Conveyor Belt-1 will begin to run. After 5 seconds Conveyor Belt-2 will be active. After the whole system runs		3

		2	Develop and Test a LAD/FBD for the given system using simulation software. Identify and select sensors, switches and actuators required to implement the sytem. Empty bottle detection and rejection.	1	3		Develop and test a LAD /FBD using simulation software to sort three different types of jobs. identify sensors, switches and actuators required to implement the sytem.	3
1	2,3	3	Instructions, Subroutine Instructions, Calling a Subroutine With Parameters. Comparison Instructions in PLC Programming. Equal (EQU) Instruction	-		I s , t	Develop and Test a LAD for this system using i LC. Simulation software. Identify and select sensors switches and actuators required to implement the sytem.	

			Not Equal (NEQ) Instruction Less than (LES) Instruction Less Than or Equal (LEQ) Instruction. Greater Than (GRT) Instruction. Greater than or Equal (GEQ) Instruction. Limit Test (LIM) Instruction.					
1	1 2,3,4	4	Math Instructions: Multiply Integer to Double Integer and Divide Integer with Remainder, Multiply Integer to Double Integer and Divide Integer with Remainder, Increment and Decrement Instructions. MOV and Masked MOVE instructions Practice of Instructions	2	2	Develop LAD/ Functional Block Diagram (FBD) for the parking lot controller by using math instructions. Do not use counter instructions? Identify and select sensors ,switches and actuators required to implement the sytem. The parking lot which has a capacity of 100 cars is to be controlled by a PLC system. The sensor S1 and S2 are used to count the car at the entrance and exit. If the number of the cars reaches to 100, red light is lit and the gate arm is closed. The arm stays closed until one or more parking space is available in the lot. The gate arm is controlled by activating/deactivating the gate solenoid (GS).		3

	2	4	2	Elements of logic panel: DIN rail for equipment, mounting, Cable channel. Terminal for wire connection, VFD, PLC, Power supply, SMPS. Relay, Contactor, Fan, Connectors, Input outputs module, Power sockets, Transformer, HMI, Selector switch, Push button, Indicating lamp, etc.	1		3	 Safety measures for PLC installations control panels. Demonstrate all tools that are requi for making the PLC control panel. 	s in red	3	3
	2	4	3	To cut DIN rail as per our requirements and fixed in the control panel	1		3	To Mount different devices on DIN rail		3	3
	2	4	4	 To connect all equipment by different types of cables. Check all connections before powering on the control panel multimeter. 	1		3	Demonstration of SMPS and their connection	15		3
			5	CIE 1- Written and practice test	-	-	-	Assessment Review and corrective action			3
			6	Industry Class + Assignment (PLC control panel)	2		3				
4	2	4	1	Peer discussion on Industrial assignment		1]	 installation, Troubleshooting and maintenance of PLC Safety precautions when installing PLC systems. Power requirements and safety circuitry Power requirements: Common AC Source. Isolation Transformers. Safety circuitry: Emergency Stops, Master control relay (MCR) and safety control relay (SCR), Emergency Power Disconnect. 	1	2	

	2	4	2	 I/o installation, wiring, and precautions I/o module installation, Wiring considerations: wire size, wire and terminal labelling. Wire bundling. Wire bundling. Wire bundling Wiring procedures Special i/o connection precaution: 	1		3	PLC START-UP AND CHECKING PROCEDURES: Static input wiring check, static output wiring check, dynamic system checkout			3
	2	4	3	 PLC system maintenance: preventive maintenance: guidelines for preventive measures: spare parts, replacement of I/O modules. Common Causes of Programmable Logic Controller Failure Classification of Faults in a PLC System. Trouble shooting of Hardware faults 	1		3	 Troubleshooting the PLC system: Troubleshooting ground loops Diagnostic indicators Troubleshooting plc inputs Troubleshooting plc outputs Troubleshooting the CPU Troubleshooting Specific Components of the PLC System Power Supply Trouble shooting Troubleshooting PLC Program Errors Troubleshooting the Working Environment of a PLC 			3
	2	4	4	Types of software faults Access various troubleshooting resources provided in the software to diagnose the faults with the PLC system.	1		3	Access various troubleshooting resources provided in the software to diagnose the faults with the PLC system.			3
			5	Developmental Assessment		-		Assessment Review and corrective action			3
			6	Industry Class + Assignment (Trouble shooting of PLC)			3				
Week	C 0	PO	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
				Peer discussion on Industrial		4		VFD	2		1
5	3	1	1	assignment				• Familiarizing AC motor speed is controlled using the voltage or frequency.			

								• Familiarizing constant flux density. And AC induction motors.			
	3	4	2	 Building blocks of VFDs, specifications, types and working principles. Torque/current Vs frequency characteristics. Sizing of VFD VFD with motor control panel, modules of VFD. Industrial and domestic applications of VFDs. Selection of VFD for a given application. 	2		2	Wire and test VFD with motor control panel		3	}
	3	4	3	 Test the communication port, cable and module of VFD. Connect and Commission the given VFD Configure and run the motor with factory settings. Troubleshooting of VFD. 	1		3	Mounting of Variable Frequency Drive To operate Variable Frequency Drive. Set and control the speed of motor by VFD.		3	}
	3	4	4	 Diagnose the simulated faults and explore the remedial measures of AC drives. Connection of Variable Frequency Drive with PLC and motor 	1		3	Motor Speed Control using VFD and PLC		3	}
			5	CIE 2- Written and practice test	-	-		Assessment Review and corrective action			3
			6	Industry Class + Assignment (Industrial application of VFD)	2		3			•	
6	3	1	1	Peer discussion on Industrial assignment		4		 Servo motors: Fundamentals of Servo motors and motion control applications. Servo motors, specifications 	1	2	2

								 servo drives and AC Drives, principle of operation and its applications in motion control, precision measurements etc. Demonstration of servo motor applications. 			
	3	4	2	 Wire and test Servo drive. Connect and Commission the given servo Drive. Servo drive for electric mobility application Unguided vehicle(UGV) Servo drive for robotic applications 	1		3	Configure and run the motor with factory settings.			3
	3	4	3	 Diagnose the simulated faults and explore the remedial measures of servo drives. 	1		3	 Various communication standards and protocols used in Drives. Communication cables and adapters. Various Fault diagnosis in the communication modules. 	1		2
	3	4	4	 Connect the Drive with a computer, configure and establish communication. Configure the drive for various applications using the software. Troubleshooting of Servo drive. 	1		3	 Monitor various motor parameters using the given drive software. 			3
			5	Developmental Assessment	•	-		Assessment Review and corrective action			3
			6	Industry Class + Assignment (Industrial application of servomotor)	2		3				
Week	C O	P O	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Τ	Р
7	5	4	1	Peer discussion on Industrial assignment		4		PLC with colour Touch screen Human Machine Interface (HMI):	1		2

	5	4	2	Working with HMI software Tool • Configure PLC with HMI • Animation with graphical objects • Troubleshooting of communication problems with drive/PLC • Set up and configure HMI with PLC and Perform supervisory control to turn on /off output field devices -1	2		2	 Colour Touch Screen HMI panels and specifications, various industry interfaces on HMI panels, features of HMI panels Set up and configure HMI with PLC and Perform supervisory control to turn on/off output field devices -2 			}
	5	4	3	 Animate objects on a HMI screen to monitor motor status. Trend the data of a process parameter using a trend tool. 	1		3	 Create user groups and monitor screens with proper authentication. Use security features to do tag logging and command execution. 		3	}
	5	4	4	 Control the servo motor from PLC on a network for various operations such as acceleration, and deceleration. Configure a servo Drive from the given PLC and Control the motor speed for fixed steps for indexing operations and integrate the given PLC, SCADA/HMI and VFD systems to automate the given process1 	1		3	Configure a servo Drive from the given PLC and Control the motor speed for fixed steps for indexing operations and integrate the given PLC, SCADA/HMI and VFD systems to automate the given process2		3	;
			5	CIE 3 Written and practice test				Assessment Review and corrective action			3
			6	Industry Class + Assignment (Integrate HMI with PLC)	2		3	· · · · · · · · · · · · · · · · · · ·			
8	4	1	1	Peer discussion on Industrial assignment.		4		Introduction to basic pneumatic components	2		1

		Wire, program and automate a working model Applications. :	1	3	Wire, program and automate a working model Applications. :		3
		Wiring and identifying the sensors and valves in the batch process reactor plant and programming it for mixing of the two ingredients-1 OR Design, construct, install, configure, test and demonstrate the operation of an industrial conveyor of empty boxes -1			Wiring and identifying the sensors and valves in the batch process reactor plant and programming it for mixing of the two ingredients-2 OR Design, construct, install, configure, test and demonstrate the operation of an industrial conveyor of empty boxes -2		
4 4	2						
		Description of operation: • If there is no box to convey, the device is off; • If a box is detected by Sb, the conveyor is turned on and the speed of the treadmill must be reached in 5 seconds; • The box is conveyed at a speed of 25 cm/s in auto mode; • Speed can be regulated by user in manual mode with a potentiometer and displayed on the front door of the control box;					

4 4 3 Wire, program and automate a working model Applications: Automatic sorting station-1 3 Wire, program and automate a working model Applications: Automatic Backgroup 3			5	System-1. Developmental Assessment Industry Class + Assignment		 	Assessment Review and corrective action		3
over inished its course on the treadmill detected by sensor Sp AND no new box has been inserted for 10 seconds; Description of contents • M1 is a three-phase asynchronous motor 230 V / 400 V, 0, 18 kW; • Sp is a photo-electric sensor, diffuse system, 24 VDC, negative; • Sb is a photo-electric sensor, thrubeam, (Sbe = Emitter; Sbr = Receiver) 24 VDC, negative; • SW is a selector switches with 2 NO contacts and standard or long handle. • RH is a potentiometr to regulate speed in manual mode; • Speed driver is a SCHNEIDER Altivar ATV12 H018 M3; • HV is a digital display of the speed. 4 4 4 3	4	4	4	Wire, program and automate a working model Applications. : PLC based Automatic Packaging	1	3	Wire, program and automate a working model Applications. : PLC based Automatic Packaging System-2		3
box Infished Its Course on the treadmill detected by sensor Sp AND no new box has been inserted for 10 seconds; Description of contents • M1 is a three-phase asynchronous motor 230 V / 400 V, 0, 18 kW; • Sp is a photo-electric sensor, diffuse system, 24 VDC, negative; • Sb is a photo-electric sensor, thru- beam, (Sbe = Emitter; Sbr = Receiver) 24 VDC, negative • SW is a selector switches with 2 NO contacts and standard or long handle. • RH is a potentiometer to regulate speed in manual mode; • Speed driver is a SCHNEIDER Altivar ATV12 H018 M3; • HV is a digital display of the speed.	4	4	3	Wire, program and automate a working model Applications: Automatic sorting station1	1	3	Wire, program and automate a working model Applications : Automatic sorting station2		3
b the conveyor is turned on the				 box finished its course on the treadmill detected by sensor Sp AND no new box has been inserted for 10 seconds; Description of contents M1 is a three-phase asynchronous motor 230 V / 400 V, 0, 18 kW; Sp is a photo-electric sensor, diffuse system, 24 VDC, negative; Sb is a photo-electric sensor, thrubeam, (Sbe = Emitter; Sbr = Receiver) 24 VDC, negative SW is a selector switches with 2 NO contacts and standard or long handle. RH is a potentiometer to regulate speed in manual mode; Speed driver is a SCHNEIDER Altivar ATV12 H018 M3; W is a digital diaphay of the speed 					

9	4	1	1	Weekly Assignment review	-	4	-	Introduction to IOT Main components used in IoT Ways of building IoT: Characteristics of IoT: Modern Applications: Demonstrate application of IoT	2	1
	4	1	2	 Communication devices in IoT Needs for setting up IoT environment for basic applications Choosing a platform for IoT development AWS IoT: (Amazon Web Services) Microsoft Azure IoT: Choosing IoT hardware processor: Arduino -Set up – procedure, Advantages: Raspberry Pi - Set up – procedure, Advantages: Need to use Bluetooth beacons 	2		2	 Introduction to NODE MCU ESP8266 (WIFI module) Automate a system to control appliances from anywhere through the internet. 	1	3
	4	1,4	3	IoT-based Smart Energy Meter using NodeMCU ESP8266	1		3	 What is Raspberry pi and why is it important for IoT IoT-based Smart Energy Meter using Rasberry PI 		3
	4	4	4	 IoT-Based Home Appliances Control with Adafruit IO and Raspberry Pi 	1		3	 Applying IoT technologies in the Electric Power Industry IIoT in Industrial Automation The essentials of an Industrial IoT solution 	1	2

		 IoT-based Home Automation using Blynk App and Raspberry PI 				 Practical Industrial IoT examples for daily use 		
4	5	CIE 4 Written and practice test	-	-	-	Assessment Review and corrective action		3
	6	Industry Class + Assignment (Automating industrial process)	2		3			

Week	C 0	PO	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
	5	4	1	Peer discussion on Industrial assignment		4		 Interconnect PLC systems with different industry standard communication protocols for data transfer. Need for Industrial networking brief history Different types of networking architecture Topology 	3		
10	5	1	2	 OSI model of networking Networking hardware Network standards Modbus, CAN bus, ControlNet, Ethernet, Profibus FIP I/O, etc 	4			Proprietary Network standards and protocols : Master Slave Configurations.	3		
	5	4	3	 Communication Driver software and Communication hardware modules Network / communication driver software install and settings for PLC and SCADA. 			4	 Remote Terminal Units Scheme of Remote I/O 	3		

	5	4	4	Demonstrate Industrial Automation Communication Protocols - RS232- 422-485 standards			4	Demonstrate HART and MODBUS, PROFIBUS, DH-485 and Foundation fieldbus etc.			3
			5	Developmental Assessment				Assessment Review and corrective action			3
			6	Industry Class + Assignment (Industry standard communication standards)	2		3				
Week	C O	P O	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
11	5	1	1	Peer discussion on Industrial assignment		4		Supervisory data control and acquisition system (SCADA) Introduction to SCADA: • What is SCADA? • SCADA SYSTEMS • Evolution of SCADA • Objective of SCADA. • Benefits of SCADA. • Functions of SCADA: • SCADA APPLICATIONS • Usage of SCADA • Real-Time Monitoring and Control using SCADA	3		
	5	4	2	 SCADA HARDWARE: SCADA Hardware Functions, Remote Terminal Units (RTU): RTU Hardware: A typical single-board RTU. Hardware functionality in an RTU, RTU Software functions Basic operation: RTU Standards. Difference between PLC and RTU Features of SCADA 	2		2	 SOFTWARE AND PROTOCOLS. DNP3 Protocol: Important Features of DNP3. IEC60870 PROTOCOL The two widely used protocols for SCADA Applications : HDLC (High-Level Data Link Control) MODBUS The widely-used open software for SCADA systems : Citect and Wonderware. 			3

				 Configuration for SCADA environment and applications. SCADA Software Introduction. Simple Digital System 	1		3	Create SCADA Animation in SCADA software			3
	5	4	3	 Simple Digital System implementation in SCADA software. Simple analog System implementation in SCADA software 			5				5
	5	4	4	Conveyor Animation Example in SCADA	1		3	Visibility Concept in SCADA			3
		4	5	CIE 5 Written and practice test	-	-		Assessment Review and corrective action			3
			6	Industry Class + Assignment	2		3				
Week	C O	P O	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
	5	4	1	Peer discussion on Industrial assignment		4		 Interfacing of SCADA with PLC Master Terminal Unit (MTU) Remote Terminal Unit (RTU) 	1		2
12	5	4	2	 Control PLC from SCADA PLC ladder logic to control variable frequency drive (VFD) for motor speed control with speed selection from Field Local Panel or SCADA graphics1 	1		3	Control PLC from SCADA PLC ladder logic to control variable frequency drive (VFD) for motor speed control with speed selection from Field Local Panel or SCADA graphics-2			3
	5	4	3	Digital Alarms Interfacing with PLC	1		3	Analog Alarms Virtual Simulation			3
	5	4	4	Analog Alarms Interfacing with PLC Basic Report Generation-1	1		3	Analog Alarms Interfacing with PLC Basic Report Generation-2			3
			5	Developmental Assessment				Assessment Review and corrective action			3
			6	Industry Class + Assignment (Application of SCADA in automation)	2		3				

Week	C 0	P O	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
13	1,2, 3,4, 5	2,3, 4		 Internship a) Secondary research on various industries and their operations to identify at least 3 companies along with the areas of work interest and develop an internship plan that clearly highlights expectations from the industry during the internship. b) Design and develop a cover letter for an internship request to all 3 identified companies and the resume to be submitted to potential companies. c) Prepare for an internship interview to highlight your interests, areas of study, career aspirations and personnel competence – including the areas of learning you expect to learn during the internship 		4		 Project a) Identification of the problem statement (from at least 3 known problems) the students would like to work as part of the project – either as provided by faculty or as identified by the student. Document the impact the project will have from a technical, social and business perspective. b) Design and develop the project solution or methodology to be used to solve at least one of the problems identified. Prepare a project plan that will include a schedule, WBS, Budget and known risks along with strategies to mitigate them to ensure the project achieves the desired outcome. 			3

Reference:

SI. No.	Description									
1	Programmable Logic Controllers: John W.Webb, Ronald A.Reis, PHI									
2	Introduction to PLC by Gary Dunning, Cengage Learning.									
3	Mechatronics: W.Bolton									
4	Control of Machines- S.K. Bhattacharya & Brijinder Singh, New Age International Publishers									
5	https://foodsafetytech.com/column/automation-benefits-food-beverage-industry/									
6	PLC Handbook									
0	https://cdn.automationdirect.com/static/eBooks/PLC%20Handbook.pdf									
7	https://www.electrical4u.com/industrial-automation									
8	https://support.industry.siemens.com/cs/document/109782616/logo!-soft-comfort-v8-demo?dti=0&lc=en-WW									
9	https://new.siemens.com/in/en/products/automation/systems/industrial/plc/logo/logo-demosoftware.html									

10	Programming a daily timer on LOGO PLC: <u>https://www.youtube.com/watch?v=Rl2VIBUVr-0</u>
11	Siemens Logo 8 Pump Start & Stop Control With Set Pressure: <u>https://www.youtube.com/watch?v=gf0ZwrVvn_4</u>
12	https://nptel.ac.in/content/storage2/courses/112106175/downloads/Module%204/SELF%20EVALAUTION/SE-Lecture%2041.pdf
13	https://accautomation.ca/wiring-push-buttons-and-selector-switch-to-click-plc/
14	https://realpars.com/discrete-sensors-part-1/
15	https://www.automationdirect.com/adc/overview/catalog/sensors -z- encoders
16	https://www.rtautomation.com/technologies/control-iec-61131-3/
17	https://davidrojasticsplc.files.wordpress.com/2009/01/libro-en-espanol.pdf
18	https://instrumentationblog.com/bit-logic-plc-programming-examples/
19	https://accautomation.ca/plc-programming-example-shift-register-conveyor-reject/
20	https://instrumentationtools.com/plc-program-for-counting-moving-objects-on-conveyor/
21	https://accautomation.ca/plc-programming-example-process-mixer/
22	https://automationforum.co/plc-program-batch-process/
23	https://instrumentationtools.com/plc-program-for-mixing-
25	<u>tank/#:~:text=When%20the%20normally%20closed%20%EF%AC%82oat,mix%20the%20two%20liquids%20together.</u>
24	https://accautomation.ca/plc-programming-example-sorting-station-shift-register/
25	https://instrumentationtools.com/car-parking-system-plc-programming/
26	https://learn.automationcommunity.com/car-parking-plc-program/
27	https://www.sanfoundry.com/plc-program-remove-empty-detected-bottle-conveyor/
28	Automatic bottle filling and capping: <u>https://www.youtube.com/watch?v=JdXzMI1PXcs</u>
29	https://instrumentationtools.com/plc-program-to-control-level-of-two-tanks/
30	https://www.reliance-scada.com/en/download/reliance4/reliance4-example-projects
31	https://electrical-engineering-portal.com/plc-troubleshooting
32	https://www.plctutorialpoint.com/2016/05/plc-fault-finding-troubleshooting.html
33	https://instrumentationtools.com/hardware-troubleshooting-steps-for-plc-automation-systems/
34	https://instrumentationtools.com/how-modbus-communication-works/
35	https://instrumentationtools.com/plc-program-to-control-motor-speed-using-vfd-drive/
36	https://instrumentationtools.com/how-to-control-vfd-with-plc/
37	https://realpars.com/connect-vfd-to-plc/
38	https://forumautomation.com/t/plc-selection-criterias/4383
39	https://www.plctechnician.com/news-blog/evolution-plcs
40	SCADA applications in manufacturing SCADA process control systems: <u>https://www.youtube.com/watch?v=f0bw2DE-</u>
10	cos&list=RDCMUCFnjTv9IIHl0Pk6u_i8CJWQ&index=6
41	SCADA colour mixing recipe management: <u>https://www.youtube.com/watch?v=S6giv9rIRNA&list=RDCMUCFnjTv9IIHl0Pk6u_i8CJWQ&index=13</u>
42	Introduction to SCADA System Supervisory Control and Data Acquisition System: https://www.youtube.com/watch?v=86uY3TQq2Yk
14	https://nptel.ac.in/courses/108106022

43	https://bin95.com/industrial-training-videos/ab-plc-dh485-rs232-usb.htm
44	https://www.geeksforgeeks.org/introduction-to-internet-of-things-iot-set-1/
	Introduction to IOT
45	a.https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_01281271072738508814673_shared?collectionId=lex_auth_01309442655
45	35569922151_shared&collectionType=Course
	b. https://www.geeksforgeeks.org/internet-things-iot-2/
	Introduction to NODE MCU ESP8266 (WIFI module)
16	https://www.nodemcu.com/index_en.html
40	Automation system to control appliances from anywhere through the internet.
	https://easyelectronicsproject.com/esp32-projects/esp8266-mqtt-home-automation-system/
	IoT based Smart Energy Meter using NodeMCU ESP8266
47	https://iotdesignpro.com/projects/iot-based-smart-energy-meter-using-nodemcu-esp8266
	https://iotdesignpro.com/projects/iot-based-smart-energy-meter
	What is Raspberry pi and why is it important for IoT
40	https://analyticsindiamag.com/raspberry-pie-important-iot/
48	IoT based Smart Energy Meter using Rasberry pi
	https://circuitdigest.com/microcontroller-projects/iot-based-raspberry-pi-smart-energy-meter
	IoT Based Home Appliances Control with Adafruit IO and Raspberry Pi
10	https://iotdesignpro.com/iot-based-home-appliances-control-adafruit-io-and-raspberry-pi
49	IoT based Home Automation using Blynk Ann and Basnberry Pi
	https://iotdesignpro.com/raspberry-pi-projects?page=4
	Applying IoT technologies in the Electric Power Industry
50	https://www2.deloitte.com/xe/en/insights/focus/internet-of-things/iot-in-electric-power-industry.html
۲1	Practical Industrial IoT examples for daily use
51	https://www.ixon.cloud/knowledge-hub/7-practical-applications-of-iiot-in-industrial-automation
52	https://instrumentationtools.com/problem-on-plc-hmi-vfd-and-motor-circuit/
	PLC Troubleshooting
53	https://electrical-engineering-portal.com/plc-troubleshooting
	https://www.dosupply.com/tech/2022/06/01/plc-troubleshooting-flowchart-and-explanation/
54	$https://instrumentationtools.com/hardware-troubleshooting-steps-for-plc-automation-systems/\#h-how-to-troubleshoot-the-plc-hardware-faults_lineshoot-lineshoot-the-plc-hardware-faults_lineshoot-$
	https://www.electricityforum.com/ien/electric-motors-and-drives/yfd-sizing
55	https://www.electrolylorum.com/hcp/electro-motors-and-unves/vid-sizing
	https://www.iocusonurives.com/now-uo-you-size-a-viu/

	https://www.elitecontrols.us/how-do-you-size-a-variable-frequency-drive-vfd/
	http://www.vfds.org/vfd-application-guide-379829.html
56	https://instrumentationtools.com/vfd-commissioning-and-testing-procedure-variable-frequency-drive/
	VED
	Vi D
	www.newark.com>agient>1roubleshootingvFD
57	<u>cdn.logic-control.com > media > abb</u>
	https://www.pesquality.com/blog/general-troubleshooting-of-vfd-problems
	https://instrumentationtools.com/how-to-control-vfd-with-plc/
	https://www.ato.com/servo-drive-troubleshooting
58	https://gesrepair.com/servo-motor-drive-troubleshooting-guide/
59	https://instrumentationtools.com/fieldbus-profibus-hart-protocols/

CIE Assessment	Assessment Mode	Duration In hours	Max Marks	
Week 3	CIE 1– Written and practice test	4	30	
Week 5	CIE 2– Written and practice test	4	30	
Week 7	CIE 3– Written and practice test	4	30	
Week 9	CIE 4– Written and practice test	4	30	
Week 11	CIE 5– Written and practice test	4	30	
	On line Course work (Minimum 10 hours online course with certification from (SWAYAM/NPTEL/Infosys Springboard)		40	
	Profile building for Internship / Submission of Synopsys for project work		20	
Portfolio evaluation (Based on industrial assignments and weekly developmental assessment) *		30		
TOTAL CIE MARKS (A)			240	
SEE 1 - Theory exam (QP from BTE) Conducted for 100 marks 3 hrs duration reduced to 60 marks	3	60	
SEE 2 – Practical 3			100	
TOTAL SEE MARKS (B)			160	
TOTAL MARKS (A+B)				

CIE and SEE Assessment Methodologies

* The industrial assignment shall be based on peer-to-peer assessment for a total of 10 marks (on a scale of 1 to 10) and in the event of a group assignment the marks

awarded will be the same for the entire group, the developmental assessment will be for a total of 20 marks and based on MCQ/case study/demonstration and such other assignment methods

Assessment framework for CIE (1 to 5)

Note : Theory to be conducted for 1 hour and practice for 3 hours, total duration of exam – 4 hours

Programme	Electrical & Electronics Engineering	Semester			V
Course	Industrial Automation	Max Marks 30		30	
Course Code	20EE51I	Duration 4 hour		4 hours	
Name of the	course coordinator				
Note: Answer	one full question from each section.				
Qn.No	Question	CL	CO	PO	Marks
		L3/L4			
	Section-1 (Theory) – 10 marks				
1.	Slot 0 Slot 1 Slot 2 Slot 3 (processor) (discrete input) (unused) (discrete output)	L4			10
	VAC Wer Switch A Switch B Lamp Z PLC connected to a pair of pushbutton switches and light bulbs as shown in this illustration: Examine the following relay ladder logic (RLL) program determining the necessary switch statuses to energize switch Z:	1	1	2	

When PB1 is pressed feed unit advance & motor runs for 5 secs only if the job is		
present and clamped then return back.		
After delay of 3 secs cycle repeats until PB4 is pressed.		
Each operation can also be operated manually by individual push buttons		
Parameter: PB3 press everything off.		
Cycle should repeat if PB1 press again after completion of one cycle		

Note : Theory questions shall be aligned to practical questions

Assessment framework for SEE 1 (Theory)

Programme	: Electrical & Electronics Engineering			
Course Course Code	: V : Industrial automation Max : 20EE51I Du	x Marks : ration :	100 3 Hrs	
Instruction	to the Candidate: Answer one full question from each section.			
Q.No	Question	CL	CO	Marks
	Section-1	ſ	Γ	
1.a)	Write the PLC circuit for the following condition When PB1 is pressed L1 gets ON after 10sec L1 off L2 ON there after 15 sec L2 OFF L3 ON, blinks with delay of 1sec for 10 times then gets OFF Parameter: PB3 press everything off. Cycle should repeat if PB1 press again after completion of one cycle.	L4	1	10
b)	PLC Sensor Digital I/O Pick an appropriate sensor for the circuit shown below and justify the selection.	L3		5
c)	Select sensors ,switches and actuators required to implement the sytem. The parking lot which has a capacity of 200 cars is to be controlled by a PLC system. The sensor S1 and S2 are used to count the car at the entrance and exit. If the number of the cars reaches to 200, red light is lit and the gate arm is closed. The arm stays closed until one or more parking space is available in the lot. The gate arm is controlled by activating/deactivating the gate solenoid (GS).	L3		5

	The status of each shutdown contact is as follows: Vibration contact: closed when okay, opens when vibration becomes excessive Overload contact: closed when okay, opens when overloaded Temperature contact: open when okay, closes when hot Draw a PLC ladder-logic program to start and stop this motor.			
b)		L4		10
	 separated upstream of the processing unit. The separating cylinder's end positions are monitored using magnetic proximity switches. 1. Select a suitable proximity switch for monitoring the end position of a cylinder. 2. Explain terminology from the field of proximity switch technology. 			
	3. Determine whether or not a solenoid valve can be directly actuated by a proximity switch.			
3.a)	Section-2 Testing of PLC vielded following results. Find likely fault in the PLC	L4	2	10
3.d)	 Diagnostic indicators are not showing RED Power supply is OK Field input , outputs and I/O modules Check Ok Program in the PLC memory matches with the master program and all the working environmental conditions are as recommended by the PLC manufacturer. PLC system still doesn't come up even with proper powering 	L4		10

Section-4				
7	To automate a sorting station	L4		20
	1. Write the process algorithm (step by step procedure/ instructions)			
	2. Block diagram of system/process diagram			
	3. Schematic diagram of logic circuit /PLC ladder diagram/ Functional block diagram /Structured			
	list/ instruction list			
	Selection of proper sensors , motors, switches , valves other accessories with specifications		1.	
8	To automate a packaging system	L4	T	20
	1. Write the process algorithm (step by step procedure/ instructions)			
	2. Block diagram of system/process diagram			
	3. Schematic diagram of logic circuit /PLC ladder diagram/ Functional block diagram /Structured			
	list/ instruction list			
	Selection of proper sensors , motors, switches , valves other accessories with specifications			
	Section-5			
9.a)	Explain part of the SCADA system which initiates all most all communications and interface with	L3		5
	operator.			
b)	Explain the scenarios where	L3		10
	1. Profibus is preferred over Modbus			
	2. Modbus is preferred over Profibus		5	
c)	Can we replace PLC with RTU? Justify your answer.	L3		5
10.a)	Where HART protocol is used. Why is it called as Hybrid protocol? Compare its data rate and range			10
	with other protocols			
b)	Are alarms indispensable in SCADA systems? Justify your answer.	L3		10
Scheme of Evaluation for SEE 2

Sl. No	Description	Marks
	Automate given process	
1	Process algorithm (step by step procedure/ instructions) with Block diagram of system / process diagram	10
2	Schematic diagram of logic Circuit /PLC ladder diagram/ Functional block diagram /Structured list/ instruction list	20
3	PLC Input / Output List	05
4	Power distribution scheme	05
5	Selection of proper sensors, motors, switches, valves other accessories with specifications	10
6	Selection of PLC /HMI with proper specifications	05
7	Proper Input/output connections to PLC	10
8	Simulation of ladder diagram	10
9	Professional practice 1. Safety Electrical power supply and circuit integrity with proper insulation with no bare wires and loose connections, pneumatic , mechanical connections integrity firm , no leaks 2. Usage of proper tools and equipment usage Usage of right tools and methods for electrical connections. Mounted hardware and circuit board properly. No damage to tools and equipment	05
10	Testing and Troubleshooting of automated system	10
11	Results (of fully automated)	10
	Total	100

Sl. No.	Particulars	Specification	Quantity
1	PLC Systems with digital I/P, O/P	12/24v Dc/relay	5
	modules and software	6 Digital Inputs , 4 Digital Outputs,	
		ethernet card	
		standard micro Sd card	
		integrated webserver	
2	PLC Systems with analog I/P, O/P	12/24v Dc/relay	2
	modules and software	6 Digital Inputs , 4 Digital Outputs,	
		ethernet card	
		standard micro Sd card	
		integrated webserver	
	HMI with software	7 inch panel, 24 V DC	5
3	Pneumatic kit	Valves , air compressor (minimum capacity) and accessories	1
4	Conveyor belt assembly	Prototype	2
5	PLC control panel	With mounting arrangement for PLC power supply pushbutton switch etc.	2
6	VFD	2HP	2
7	Servo Motor	1.5 Kw	2
8	Raspberry PI Board		5

Equipment/software list with Specification for a batch of 20 students

Government of Karnataka

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Program	Electrical & Electronics Engineering	Semester	5
Course Code	20EE52I	Type of	Integrated
		Course	104:52:312
		L:T:P	
Specialization	Power Engineering	Credits	24
CIE Marks	240	SEE	160
		Marks	

Introduction: Power engineering, deals with the generation, transmission, distribution, and utilization of electric power, and the electrical apparatus connected to such systems. The power engineering course is taught in Boot camp mode. Boot camp are 12 weeks of intense learning sessions designed to prepare the students for the practical world – ready for either industry or becoming an entrepreneur. Students will be assisted through the course, with development-based assessments to enable progressive learning. Power engineering introduces Smart Grid, Energy auditing, SCADA and IoT. This specialization enables the student to install, commission, test and maintain an EV charging stations. Students are also exposed to power quality issues in Data canters and ways to mitigate them.

Pre-requisite

Before the start of this specialisation course, student shall have prerequisite knowledge gained in the first two years on the following subjects:

1st year – Engineering Mathematics, computer Aided Engineering Graphics, Fundamentals of Electrical and Electronics Engineering and Basics of Electrical power system, Communication Skills, Statistics & Analysis, Basic IT Skills, Project Management skills and Residential wiring.

2nd year- Transformers and Alternators, Transmission and Distribution, Switchgear and Protection, Analog and Digital electronics, Electrical motors, Power electronics, Fundamentals of Automation Technology and Computer Aided Electrical Drawing.

In the third year of study, student shall be applying previous years learning along with specialised field of study into projects and real-world applications.

Course Cohort Owner

A Course Cohort Owner is a faculty from the core discipline, who is fully responsible for one specialised field of study and the cohort of students who have chosen to study that specialised field of study.

Guidelines for Cohort Owner

- 1. Each Specialized field of study is restricted to a Cohort of 20 students which could include students from other relevant programs.
- 2. One faculty from the Core Discipline shall be the Cohort Owner, who for teaching and learning in allied disciplines can work with faculty from other disciplines or industry experts.

- 3. The course shall be delivered in boot camp mode spanning over 12 weeks of study, weekly developmental assessments and culminating in a mini capstone.
- 4. The industry session shall be addressed by industry subject experts (in contact mode/online / recorded video mode) in the discipline only.
- 5. The cohort owner shall be responsible to identify experts from the relevant field and organize industry sessions as per schedule.
- 6. Cohort owner shall plan and accompany the cohort for any industrial visits.
- 7. Cohort owner shall maintain and document industrial assignments, weekly assessments, practices and mini-project
- 8. The cohort owner shall coordinate with faculties across programs needed for their course to ensure seamless delivery as per time table
- 9. The cohort owner along with classroom sessions can augment or use supplemental teaching and learning opportunities including good quality online courses available on platforms like Karnataka LMS, Infosys Springboard, NPTEL, Unacademy, SWAYAM, etc.

Course outcome:

On successful completion of the course, the students will be able to:

CO1	Select and demonstrate the appropriate charging methods for a given EV.
CO2	Install, test and commission the EV charging station and evaluate the charging capabilities of
	the EV charging station.
CO3	Measure, Monitor, and control power in an electrical utility.
CO4	Perform an energy audit of a given building /industry and suggest suitable energy-saving
04	measures.
CO5	Analyze the power quality issues in a data center and suggest suitable remedies.
CO3 CO4 CO5	the EV charging station. Measure, Monitor, and control power in an electrical utility. Perform an energy audit of a given building /industry and suggest suitable energy-saving measures. Analyze the power quality issues in a data center and suggest suitable remedies.

Week	C O	ΡO	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
1	3	1	1	Introduction to power engineering	1		3	Term: Decarbonization:	1		2
				• Growth of the Power sector in				How Does Decarbonisation Work?			
				India and globally.				Why is Decarbonisation Important?			
				Role and importance of power				How do we Decarbonise?			
				sector organization in India				NetZero: Meaning of NetZero, the difference			
				 Central sector: NTPC, CEA, 				between NetZero and zero.			
				power grid, NLDC							
				 Private: Tata Power, Adani, 				Sustainability Carbon footprint calculator			
				Reliance, ABB, Jindal				Calculate your family's carbon footprint.			
				 State sector: KPC, KPTCL, 				Ref 1b			
				ESCOM's				Importon of Douron positive			
				Organization structure of the				Pof 1c			
				power sector including				Kei It			
				installed capacity							
				India/Karnataka.							
				• Virtual tour of NTPC, Power							
				grid NLDC, Tata Power, Adam,							
				Reliance, ABB, Jindai ,etc.,							
				Collect following data and present							
				Contect following data and present							
				• Category wise (thermal, hyder,							
				Installed capacity Indi							
				Karnataka							
				Daily generation							
				Growth of electricity							
				generation in India							
				Growth of Electricity							
				consumption							
				• (%) Towns where AT&C loss							
				reduced							
				Transmission Lines (CKm)							
				Transformation							
				Capacity(MVA)							

			Growth of Transformation capacity (MVA) and transmission lines (CKm) Ref 1g					
3	1	2	 Power Transmission: Present power transmission network: Transmission system details of India Collect the following data and present Completed Transmission systems Upcoming Transmission projects Transmission systems under construction Ref 1d Entities of power transmission: Central: Power Grid, NLDC State: KPTCL, SLDC. Power Transmission system development/future plans HVAC transmission Benefits of HVDC transmission Benefits of HVDC transmission Benefits of HVDC transmission Benefits of HVDC transmission HV distribution – Industrial LV distribution – Industrial LV distribution entities – ESCOM's Distribution loss – AT&C loss 	1	3	Regulating Authorities: Role of regulating authorities in power system. Regulating Authorities: Central: CEA, CERC State: KERC Indian Grid code Different tariff structure Demonstrate Power system operation Power/Energy demand (Peak/Non- Peak) Demonstrate Role of LDC in power system operation. Power Dispatch – Declaring, scheduling, Un-scheduled Interchange (UI)	2	1

 Billing efficiency and collection efficiency Action Plan for Billing efficiency and collection efficiency Improvement. Problems on AT & C losses Collect following data and present AT &C Loss % of ESCOMS Ref 1f Glossary of key terms: Average Cost of Supply (ACS), Average Revenue Realised (ARR), AT&C losses, Cross- subsidy, DISCOM/ Distribution utility, Energy deficit, Peak deficit, Plant Load Factor (PLF), Power Purchase Agreement (PPA): Smart Grid, Tariff petitions and orders 		
1 3 Design thinking 2 2 Examples of design thinking 1 What is design thinking? 5 steps of Design Thinking. Ref:1j Nhy is design thinking so important? 1 1 1 Why is design thinking so important? Ref:1k 1 1 1 1	2	
1 4 Applying Design Thinking to 4 How can 'Design Thinking' help utilities Sustainable Energy. Ref:1M 5 5 5 5	3	
5 Developmental Assessment - - Assessment Review and corrective action	3	
6 Industry Class + Assignment 2 3		
Week CO PO Days 1st session (9 am to 1 nm) I T P 2ND session (1 30 nm to 4 30 nm) I 7	' P	,
2 1 1 Peer discussion on Industrial 4 Fundamentals of electric vehicle charging 2	1	•
Week CO Formation Fo	1	

						Electric Vehicle (EV), Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Charging Station/ Electric vehicle Charging Station (EVCS), Charging Point/ Electric Vehicle Supply Equipment (EVSE), Charging Pool, Connector, Charge Point Operator (CPO). Types of Electric vehicles, types of Engines Stakeholders in EV Ecosystem Ref 1 EV cost calculator • Home charging calculator • Public charging calculator • Journey cost calculator • Co2 emission calculator • Tax saving calculator • Crude oil saving calculator		
1	4	2	Charging technologies for Electric Vehicles: • Classification of EV charging technologies • EV charging infrastructure classification Conductive (Plug-in/Wired) charging: • Modes of Charging {IEC 61851 standard) • Charging levels as per IEC 62196, IEC 61851, and SAE J1772	2	2	 Technical Details of EV charger: Electric Vehicle battery charger components. Block diagram of on-board EV charger, Demonstrate (Video/ physical) EV charger components Identify different EV charger components Ref 1 	1	2

			 Comparison between charging levels Demonstrate (Video/physical) different EV charging technologies Demonstrate (Video/physical) different modes of charging. Ref1 					
1	4	3	 Converters and control for EV charging: Level 1, Level 2, and Level 3 charging Block diagram and electronics inside an EVSE Pilot Wire Communication Standard Identify charging level (1,2,3) for given electric vehicle (Two-wheeler/Three-wheeler, Car/ Bus) 	2	2	 Level 3 charging: Block diagram of DC charging station. Communication and power flow between EV and EVSE: DC charging station AC/DC converter and control DC charging station DC/DC converter and control Identify different components of the DC charging station 	2	1
1	4	4	 Charging speed Connector Types Type 1/Yazaki (SAE J1772, IEC 62196-1) Type 2 (IEC 62196-2) Combined Charging System (CCS 1) CHAdeMO Combined Charging System (CCS 2) GB/T DC Charger Tesla Supercharger Selection of charger for given vehicle type, power rating, and voltage. Ref 2b Identify different EV charging connectors. 	1	3	 EV Wireless charging standards, Battery specifications of different EV segments. Ref 2a Battery swapping Types Battery swapping station and components Ref1 Selection of AC charger type-1, type -2, and type -3 Selection of DC charger connector GB/T, CHAdeMO, CCS-1, and CSS-2 Selection sizing of Charger connector cable Technical specification and features of DC chargers DC charger 30KW 	1	2

				 The Indian standards of charging connectors are derived from the international standards Bharat AC-001 Bharat DC 001 Practical conductive charging power curves. Wireless Charging: Inductive WPT: Block diagram of Inductive wireless power transfer Capacitive WPT: Block diagram of Capacitive wireless power transfer Ref 1 Demonstrate (Video) Inductive WPT Demonstrate (Video) capacitive WPT 				• DC quick charger 100kW Ref 2c		
			5	Developmental Assessment	-	-		Assessment Review and corrective action		3
			6	Industry Class + Assignment	2		3		1	I
3	1	1	1	Peer discussion on Industrial assignment.		4		Standards for EV ChargingInternational Standards:IEC 61851,SAEJ1772,IEC 61980,SAE J1773,SAE J2954,GB/T 20234Plug, Connector, And Socket Standard:IEC 62196	2	1

						 Sections in IEC 62196 standard Miscellaneous: EC 60364, SAEJ2293, SAEJ2836, SAEJ2931, SAEJ2954, IEEE1547, NFPA 70, SAEJ2836 Ref 1 		
1	1,4	2	 Indian Standards: AIS 138 part 1: Electric vehicle conductive AC charging: AC slow charging: AC slow charging with a separate charger AC slow charging with an Onboard charger On-board charger with fixed cable Demonstrate AC slow charging method AC fast charging mode AC fast charging mode AC fast charging with fixed cable AC fast charging with free cable AC fast charging with fixed cable Mandatory and optional safety functions while AC conductive charging Pin information of IEC 60309 and IEC 62196 Connector- IEC 60309 Full form of connector pins in IEC 60309 Full form of connector pins in IEC 62196 	2	2	 Charging protocols for EV charging: CHArge de MOve (CHAdeMO) Protocol, Tesla Charging Protocol, Diagram of Tesla supercharger connector Combined Charging System (CCS) -Connection pins in CCS1 connector -Connection pins in the CCS2 connector Type 2 AC charging -IEC type-2 connector Bharat Charging Standards -Bharat AC 001 Bharat DC 001 Identify type 1 plug and socket Identify type male 2 plug and socket Type 2 Female Plug & Socket Ref1 DC charging cable When To Use AC And DC Charging for Charge Electric Vehicle? Ref 4 Ref 2	2	1

			 Cable assemblies for AC slow and fast conductive charging Demonstrate AC Fast charging method AIS 138 part 2: Electric vehicle conductive DC charging system Types of EVSE Plug, Socket, Connector: IS 17017 part 2/ section 2, IS 17017 part 2/ section 3, Safety Standards. Ref 1 Ref 2 How to choose the type of plug for a charging Type1 and type2 cables Choosing right cable for your car Ref 3 					
1	1,4	3	 Safety Standards of Electric Vehicle Charging Station: The safety aspect of charging station Electrical safety Functional safety Battery charging safety Maintenance and operation safety. Setting up an EV charging station What is a Charging Station? Working of Charging Station. Components of Charging Station. Types of Charging Station. Ref 5 Classification of EV charging infrastructure 	2	2	 Setting up an EV charging station What is a Charging Station? Working of Charging Station. Components of Charging Station. Types of Charging Station. Ref 5 Classification of EV charging infrastructure Policy-making and regulatory authorities Ref 6 Identify components of the charging station Demonstrate working of charging station 	1	2

			 Policy-making and regulatory authorities Ref 6 Assessing Charging demand : Steps for the EV charging demand assessment and charging infrastructure estimation. Demand-based target setting for EV charging infrastructure in your city (Bengaluru) Ref 6 					
1	1,4	4	Arranging for electricity supply for charging Ref 6 Case-based demonstration: An EV owner has identified a location for setting up a standalone charging facility and wants to install two 50 kW chargers, three 7 kW chargers, and a 9-unit stack battery charging system. After consulting the DISCOM, it is found that the nearby DT has available capacity to support an additional load of 48 kW, beyond which its capacity would need to be augmented. Moreover, the supply code stipulates 7 kW and 65 kW as the maximum sanctioned load limits for single-phase LT and three phase LT electricity connections, respectively. What is the optimal connection type and configuration for the charging facility? Ref 6		4	 Identify Charging options for various vehicle categories Government guidelines for Setting EV Charging Stations Ref 11 State Government Policy Ref 12 SMART EV CHARGING Back-end architecture for smart charging Communication protocols for smart charging Ref 6 Ref 2 Integrating EV charging in grid planning Impact of EV charging on power demand Ref 6 Impact of EVs on the Distribution Feeder EV Load Impacts on Electricity Generation Adequacy 	1	2

	5	Electric car charge station. Ref 8 Cost Estimates for a Typical Public Charging Station (PCS) Ref 9 Ref 10 CIE 1- Written and practice test Industry Class + Assignment	- 2	-	- 3	Distribution feeder . Demonstrate impact of EV on Power Quality Assessment Review and corrective action	3
		station Ref 7 • Minimum requirements of public charging Infrastructure (PCI) • Bonofits of softing up an				Equipment • EV Load Impact on Power Quality Ref 2	
		• How to set up an EV charging				EV Load Impacts on Distribution Grid	

4	2	4	1	Peer discussion on Indus	ıstrial	4		Preparation for installation		3
				assignment.				• Employ practice of inspecting the		
								site for all requirements for the		
								erection and installation of an EV		
								charging station.		
								• Demonstrate the unpacking of the		
								EV charging machine and checking		
								for the presence and functionality of		
								all components, like the transformer,		
								electric kiosks, lines/cables, and		
								associated equipment.		
								• Determine the appropriate length		
								of the charging cable and circuit		
								breaker based on-site, charging		
								station, and customer requirements		
	2	4	2	Erection of EV charging station	ı 2	2	2	• Demonstrate the process of		3
								installing conduits for carrying		
								electrical wires, and cables from		

			 List the various types of electrical sources/facilities for energizing the charging station. Explain the process of cabling from electrical facilities such as DISCOM utility, micro-grid systems, solar panels, etc. to the place of installation of the charging station. Discuss the importance of putting identifiable marks on the civil foundation for charging station erection. 			 nearest source/facility to the charging station. Assign markings on the civil foundation for charging station erection after taking measurements. 		
2	4	3	 Erection of EV charging station Describe the importance of manufacturer guidelines in unpacking the EV charging station. Detail the technique to be followed to ensure proper erection and positioning of the charging station. Discuss the factors to decide the number of rectifiers to be installed in the charging station. Explain the considerations for a number of charging station. 		4	 Demonstrate the fixing of the EV machine on the civil foundation while ensuring a firm grip. Employ operating of appropriate tools and equipment such as drilling machine, screwdriver set, socket wrench, hammer, washers, nuts; various types of mounting and insertion tools etc. as per the type of task to be performed pertaining to EV charging station installation. 		3
2	4	4	 Installation of EV charging station Discuss the relevant IS and IEC standards applicable to the EV charging station installation. State the importance of disconnecting the power 	2	2	 Installation of EV charging station Demonstrate the installation of a rectifiers for each charging guns in the EV charging station. Demonstrate the installation of earth protection system and AC/DC 		3

			5	 supply connections before installation. Elaborate on the technique to connect the power supply to the main switches and/or installation blocks. • State the importance of residual current device in an EV charging station Explain the various types of cable routing techniques such as surface cable routing, and flush-type cable routing within a charging station. Discuss the purpose and installation procedure for the software and communication protocols. Explain the various types of protection to be provided to the charging such as weather protection, protection against voltage fluctuations, safety tests, etc. Developmental Assessment	-			3	 power modules in the EV charging station in line with IS and IEC standards applicable to EV charging station installation. Demonstrate the process of installing a residual current device (RCD) or fault current circuit breaker in compliance with the specifications of the charging station. Installation of EV charging station Employ configuring of password authentication and licensing software in the charging station. Demonstrate the installation of the appropriate protocol for EV charging, such as Combined Charging System (CCS), GB/T, CHAdeMO (CHArge de Move), AC Charging etc. Employ proper procedure for connecting and positioning the modem to the charging station to ensure effective GSM/CDMA connectivity. 		3	
										 		ļ
5	Ζ	4	1	Peer discussion on Industrial assignment.		-	4	-	 List the various types of tests that are performed to test the EV charging station. 	I	2	

						 Explain the process to be followed to conduct various types of tests pertaining to the commissioning of an EV charging station. State the key considerations to check the electrical connections for the charging station. Elaborate on the technique for measurement of the voltage drop between various parts of the charging station. Describe the steps to perform calculations for evaluating charging station characteristics and capabilities 		
2	4	2	 Testing the charging station Perform earthing tests following industry rules and regulations and standard work practices. Test the connections of the conductive parts with the supply voltage source as per standard practice. 		4	 Conduct tests to check for electrical continuity between exposed conductive parts and the earth circuit. Apply the technique of measuring the voltage drop between the exposed conductive part and the earthing terminal of the charging station. 		3
2	4	3	 Commissioning of EV charging station Commissioning the charging station Explain the procedure to rectify faults and equipment malfunction pertaining to the commissioning of the charging station. Describe the need for modifications in the existing systems and installed devices. State the importance of the installation and 	2	•	 Demonstrate how to deal with equipment malfunction and rectify faults during the commissioning process. Employ the process of modifying the existing systems and installing electrical devices as per requirements and test results. Demonstrate the process to document backups, manuals, logs, etc. as per work requirements. 		3

2			 commissioning certificate in the work process. Explain the importance of ensuring that the site is cleared of all (electrical) debris, cleaned, and safe for people before leaving 	2		2	• Vohiolo to grid simulation using		2
2	4	4	 Grid Integration of EVS and its Impacts Voltage Stability Issues. Phase Imbalance Increase in Peak Load Overloading, Power Losses. Power Quality: Conductor losses, Neutral Conductor, Motors and Generators, Transformers, Circuit Breakers and Fuses, Flicker: Ref 1 and Ref 2 Grid Support from EVs EV charger application Primary and secondary applications Concept of Vehicle2X System Application of V2X Demonstrate Vehicle to Grid(V2G) Ref 13 Vehicle to Home Ref 14 Utilization of EVs for better RE Grid Integration 	2		2	 Vehicle to grid simulation using simulation software Simulate/Develop a battery storage system using software/tools 		3
		5	CIE 2- Written and practice test	-	-		Assessment Review and corrective action		3
		6	Industry Class + Assignment	2		3		 	

Week	C 0	P 0	Days	1 st session (9 am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30 pm)	L	Т	Р
6	3	1	1	Peer discussion on Industrial assignment.		4		 Introduction to SCADA: What is SCADA? SCADA SYSTEMS Evolution of SCADA Objective of SCADA. Benefits of SCADA Functions of SCADA: SCADA APPLICATIONS Usage of SCADA, Real-Time Monitoring and Control using SCADA Ref 15 	3		
	3	1	2	 SCADA HARDWARE: SCADA Hardware Functions, Remote Terminal Units (RTU): RTU Hardware: A typical single-board RTU. Hardware functionality in an RTU, RTU Software functions Basic operation: RTU Standards. Difference between PLC and RTU Features of SCADA Ref 15 Demonstrate the difference between PLC and RTU Ref 16 Demonstrate the power measurement using a multifunction transducer. 	2		2	 SOFTWARE AND PROTOCOLS. ISO MODEL, DNP3 Protocol: Important Features of DNP3. IEC60870 PROTOCOL The two widely used protocols for SCADA Applications : HDLC (High-Level Data Link Control) MODBUS The widely-used open software for SCADA systems : Citect and Wonderware. Ref 15 	2		1

				Ref 17 • Necessity of Intelligent electronic devices in power regulation. Ref 18						
	3	1	3	 Power system automation: Benefits of power system automation, Structure of Power System Automation Architecture for power system automation. Classification of Power system Automation: Substation Automation Distribution Automation Substation Automation Bubstation Automation Distribution Automation Substation Automation Distribution Automation Distribution Automation 	2		2	 Implementation of power system automation and protection using SCADA: Hardware Development. Software Programming Simulation SCADA-Based Model for Automation and Digital Protection Ref 15		3
	3	4	4	 Simple Digital System implementation in SCADA software. Simple analog System implementation in SCADA software 			4	Create SCADA Animation in SCADA software		3
			5	Developmental Assessment	-	-		Assessment Review and corrective action		3
			6	Industry Class + Assignment	2		3		<u> </u>	
7	3	1	1	Peer discussion on Industrial assignment.		4		Introduction smart Grid-1 Meaning of smart Grid Smart Grid - Analogy with Human Body Ref 19 DRIVERS FOR SMART GRID 	2	1

					I		Commente of the close starts of the		1	
							 Components of the electrical grid History of the power grid Evolution of power grid Regulatory the authorities of the Indian energy sector impact of the electrical grid key figures of our country Indian power scenario Factors affecting the performance the of existing grid What makes grid smart smart grid conceptual model Smart grid definition Duties of smart grid smart grid architecture smart grid components Ref 20 Why do we need a smart grid Is the smart grid a "Green grid" Ref 20a Virtual tour on Smart grid Ref 20b 			
3	1	2	Introduction smart Grid-2 Power generation Distributed generation Transmission Distribution Smart information Smart metering Sensors information management smart communication smart grid Smart management	2		2	The architecture of smart grid system Grid layout customer domain market domain. service provider domain operation domain bulk generation domain transmission domain Tariff design for smart grid consumers Time of day (TOD) / time of use tariff (TOU) Critical peak pricing (CPP)	2		1

			 Smart protection system challenges in smart protection system Smart grid standards Barriers to smart grid technologies Ref 20 Demonstration of above Grid components 			 Real time pricing Return of smart grid investment through surcharges on consumers who are benefitted Ref16 Demonstration of TOD/TOU tariff 		
3	1	3	 Standards for the smart grid system Smart grid standards Classification of Smart grid standards Ref 20 Use cases, lessons learned – pilot project experiences The CESC, Mysore Smart grid pilot Project Gujrat smart grid pilot project. Electricity department, government of Puducherry REF19 	2	2	Elements and Technologies of smart grid system – I AMI (Advance Metering Infrastructure) Smart meter –Block diagram Benefits of Smart Meter smart meter measurements networking for AMI Components of AMI DA (Distribution Automation) Ref 20 Ref 19 Smart grid of tomorrow Ref 21 Demonstration of AMI	2	1
3	4	4	 Elements and Technologies of Smart Grid System- II SCADA Smart Metering compare conventional and smart metering Functional diagram of smart metering signal acquisition signal conditioning ADC 	2	2	Simulation of a sample smart grid Ref 23		3

	3		5 6	 Computation Memory Communication Ref 20 Installation of smart meters Testing of smart meters Ref 22 CIE 3 Written and practice test Industry Class + Assignment 	2		3	Assessment Review and corrective action		3	
8	3	1	1	Peer discussion on Industria assignment.	I -	4	-	Introduction to IoT main components used in IoT ways of building IoT Characteristics of IoT Modern Applications Ref 24 a and Ref 24 b	1		2
	3	4	2	 Communication devices in IoT Needs for setting up IoT environment for basic applications Choosing a platform for IoT development AWS IoT: (Amazon Web Services) Microsoft Azure IoT: Choosing IoT hardware processor: Arduino -Set up – procedure, Advantages: Raspberry Pi - Set up – procedure, Advantages: Need to use Bluetooth beacons 	1		3	 Simulate and Test blinking of LED using Arduino. Simulate and test the dc motor using Arduino clockwise & anti-clockwise rotation using Arduino. Speed control of dc motor using PWM Measure voltage, current, and resistance using Arduino. 			3

		Ref 25					
3	4	3 Introduction to NODE MCU ESP826 (WIFI module) Ref 26 IoT-based Smart Energy Meter usin NodeMCU ESP8266 Ref 27 a and Ref 27 b	5 1 8		3	Automate system to control appliances from anywhere through the internet. Ref 28	3
		4 What is Raspberry pi and why is it important for IOT Ref 29 IoT-based Smart Energy Meter usin Rasberry PI Rasberry PI • Use of Rasberry PI in IOT Ref 30	g 1		3	 Applying IoT technologies in the Electric Power Industry IoT applications: Energy Generation IoT applications: energy transmission IoT applications: Energy Consumption Ref 31 IoT-Based Energy Management System Ref 32 Benefits of Smart Energy Management using IoT (Internet of Things) Ref 33a 	3
	5	Developmental Assessment	-	-		Assessment Review and corrective action	3
	6	Industry Class + Assignment	2		3		

9	4	1	1		4	HVDS: High Voltage Distribution system 1 2
				Peer discussion on Industrial		Cost-benefit Analysis of HVDS
				assignment.		Implementation of HVDS ESCOMS in
						Karnataka
						Demonstration of HVDS system. Ref33b

4	1	2	 Loss reduction by improving the ratio of HT/LT line in Electrical Distribution System High Voltage Distribution System (HVDS)-An Alternate for Improvement of Voltage Drop Profile Open access in T &D Electricity Act Provisions Ref33b 	2	2	 Power Trading in Multi buyer and multi- seller environment Availability-based tariff concept and importance Balancing and settlement mechanism Demonstration of Power trading 	1	2
4	1	3	 Power trading rules in the changed scenario Role of Regulatory Commissions Open Access challenges for Power Market Power Exchanges and their functioning. Market Based economic Dispatch (MBED) Green Day Ahead Market (GDAM) Collect the following data and present Exchange price Power purchased from the exchange State demand met Shortage in MW Ref 1e 	1	3	Demand-side management Introduction Types of DSM program Benefits of DSM DSM techniques load clipping load shifting, valley filling Load Reduction Strategic Load Growth Flexible Load Shape Ref 34a, 34b, 34c Demonstration of different DSM techniques Demand-side management Ref 35	2	1
4	2	4	 Agriculture side Demand-side Management Ref 36 a and Ref 36 b Municipal demand side management (MuDSM): Ref 37 	1	3	 For a residential building suggest suitable energy efficient appliances for lighting, refrigeration, heating, and cooling. Calculate energy saving Per annum using those energy-efficient appliances. Saving of Co2 emission 		3

			5 6	Demonstrate Ongoing DSM proje Karnataka Ref 38 Demonstrate DSM measures Distribution Companies (DISCO Ref 39 CIE 4 Written and practice t Industry Class + Assignment	ects in by Ms) est	2		3	 Saving coal Saving water Assessment Review and corrective	actio	n		3
10	4	1	1	Peer discussion on Industrial assignment.		4		E • • • • • • • • • • • • •	NERGY MANAGEMENT AND AUDIT Definition & Objectives of Energy Management Need for Energy Audit Types of energy audit Preliminary Energy Audit Methodology Detailed Energy Audit Methodology 0	2		1	
	4	1,2	2	Ten Steps Methodology for Detailed Energy Audit Phase I -Pre Audit Phase Activities Phase II- Detailed Energy Audit Activities Ref 40	3		1	• • Ref 4	Draw process flow diagram and list process steps; identify waste streams and obvious energy wastage Example: A flowchart of Penicillin-G manufacturing Identification of Energy Conservation Opportunities Technical and Economic feasibility 0	3			
	4	4	3	 Classification of Energy Conservation Measures Energy Audit Reporting Format Understanding Energy Costs 	2		2	Energ Demo	 gy Audit Instruments onstrate use of following Electrical Measuring Instruments: Combustion analyzer: Fuel Efficiency Monitor: Fyrite: Contact thermometer: Infrared Thermometer: 	1		2	

4	2,4	4	 Benchmarking and Energy Performance Matching Energy Usage to Requirements Best Operating Practices- lighting Common monitorable parameters and performance assessment Motors Transformers Lighting system Power generator set Harmonic distribution at common coupling point(PCC) (https://beeind ia.gov.in/conte nt/publications -0 EC guidelines Explain motor load survey? Suggest Energy Conservation Measures for the different motor loading. Problems on energy audit 		4	 Pitot Tube and manometer: Speed Measurements: Leak Detectors: Lux meters: Ultrasonic flow meter TDS meter Ref 40 Energy Audit in ESCOMS 11 kV lines Town audit DTC wise audit EESL (Energy efficiency services Limited) Mobile App Present achievements of various EESL schemes Energy saved per year (Mus) Cost saving per year Avoided peak demand in MW Co2 reduction per year (million tonnes) Ref 41 Calculate the annual energy savings and simple payback from replacing standard Existing motor with energy efficient motor versus rewinding the existing motor. 		3
-	-, .	-	Industry/Apartment/Commerc ial Complex/Malls and prepare		-	Industry/Apartment/Commercial Complex/Malls and prepare a report as per standard format		-

ſ			a report as per standard format						
		5	Developmental Assessment	-	-		Assessment Review and corrective action		3
		6	Industry Class + Assignment	2		3			

11	5	1	1	Peer discussion on Industrial	-	4	-	Introduction to Data Centre	2	1
				assignment.				 Datacenter's growth trend Present scenario and future growth of Datacenter's in India Sources of Datacenter's power consumption. Classification of Datacenter's Based on the Maximum IT Load Typical Datacenter's power consumption architecture Ref 42 		
	5	2,4	2	 Electrical requirements of Datacentres Power flow in a Data centers Calculating Total Power Requirements for Data Centers Major components of electrical infrastructure Diesel Generator Selection of DG set for Data centers application Demonstrate Some energy- saving measures for DG sets Transformer is the gateway for the power to the Data centre 	2		2	 Transfer switch arrangement: Automatic Transfer Switches (ATS) Schematic of Automatic Transfer switch Arrangement Demonstration of ATS Ref 42 	1	2

			 Harmonics and K - Factor transformer Harmonics and K - Factor transformer Ref 42 					
5	1,4	3	Transient Voltage Surge Suppressor (TVSS) TVSS Ratings TVSS specification The selection of surge suppressor TVSS Selection Chart Benefits of Transient Voltage Surge Suppressor Demonstrate different TVSS Ref 42	1	3	Uninterrupted Power Supply (UPS) System: • Typical Schematic diagram of Uninterruptible Power Supply • Loading versus. Efficiency Curve for a UPS • Comparison of the efficiency curves vs IT load for two different Data centers UPS Topologies • Offline UPS: (Passive standby) • Line interactive • Online double conversion • Selection criteria • UPS configuration • High availability power system Ref 42 Demonstrate Modular/compact ups used in Data centres Ref 42 c	2	1
5	4	4	 Determination of availability MTBF (Mean time before failure) MTTR (Mean Time between Repair) Power Distribution Unit (PDU) Diagram of Power Distribution from the UPS to the IT load through the PDU 	2	2	 Advanced power strip Benefits of Advanced Power Strips Energy-saving opportunities in Electrical systems- Demonstrate use of Advanced power strip Ref 42 	1	2

			5	 Modular Power Distribution Unit (PDU Demonstrate Modular Power Distribution Unit (PDU) An ideal power distribution system attributes: Schematic of Modular Power Distribution System Static switch: Static Transfer switches Benefits of STS Demonstrate working of STS (Static Transfer switches) Ref 42 CIE 5 Written and practice test 	-	-		Assessment Review and corrective action		3
			6	Industry Class + Assignment	2		3			
12	5		1	Peer discussion on Industrial assignment.	-	4	-	Substation equipment needed to power up the data center: Ref 42 a Cost of Data Centre Outages Ref 42 b	2	1
	5	1,4	2	 Power quality Understanding the Importance of Power Quality in the Data Centre What is Power Quality Need for power quality Power Quality Parameters Reactive power and power factor Total harmonic distortion (THD) Potential Impact of following parameters in the data center Transients 	1		3	 Measure and analyse power quality parameters using a power analyser for the following Induction motor on load UPS supplying power to computers Remedial measures to mitigate power quality issues. Ref 43 power quality meters Ref 44a &b 		3

-									
				 Interruptions Sag / Under voltage Swell / Over voltage Waveform distortion Voltage fluctuations Frequency variations Understanding the Importance of Power Quality in the Data Center Ref 45 					
	5	1,2	3	Medium-Voltage Circuit Breaker- Type Automatic Transfer Switches and Bypass/Isolation Switches Fail-Safe vs. Maintenance Bypass Switches: A Comparison Ref 46 • Standard Critical Power Distribution Unit • Standard and Intelligent Critical CPDUs • Power Usage Effectiveness (PUE) Ref 47 Recommended practice for electrical preventative maintenance Ref 48	1	2	Ways Data Centres Can Improve Energy Efficiency Ref 49 Datacenter energy management Ref 50 Best practices for energy management Ref 51 Energy-efficient guidelines and best practices in energy management in Indian datacentres Ref 52	1	2
	5	2,4	4	Case studies Case study 1: Power quality improvement in a data centre by installing harmonic filters Case study 2 Energy efficiency improvement in lighting system by replacing		4	Water consumption in data centers Ref 54 Estimating a data center's carbon footprint Ref 55 Data centers in Bangalore Ref 56		3

			5	fluorescent lamps with light- emitting diode (LED) lamps Case study 3: Energy efficiency improvement in ups systems by loading optimization Ref 42 Data center case study 4 Ref 53 Developmental Assessment	-	-		Assessment Review and corrective action			3
			6	Industry Class + Assignment	2		3				
Week	C O	P 0	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
13	1,2, 3,4, 5	2,3, 4		 Internship a) Secondary research on various industries and their operations to identify at least 3 companies along with the areas of work interest and develop an internship plan that clearly highlights expectations from the industry during the internship. b) Design and develop a cover letter for an internship request to all 3 identified companies and the resume to be submitted to potential companies. c) Prepare for an internship interview to highlight your interests, areas of study, career aspirations and personnel competence – including the areas of learning you expect to learn during internship 	2	4	2	 Project a) Identification of the problem statement (from at least 3 known problems) the students would like to work as part of the project – either as provided by faculty or as identified by the student. Document the impact the project will have from a technical, social and business perspective. b) Design and develop the project solution or methodology to be used to solve at least one of the problems identified. Prepare a project plan that will include a schedule, WBS, Budget and known risks along with strategies to mitigate them to ensure the project achieves the desired outcome. 		4	10

References

Sl	Description	
N		
0		
1	Fundamentals	e-amrit.niti.gov.in > assets > admin
	-of Electric	
	Vehicle	
	Charging	
	Technology-	
	and-its-Grid-	
1	Integration	
1	Wireless	https://in.mathworks.com/company/mathworks.storios/wireless.sharging.for.electricyphicles.html?s.tid=srchtitle.electric@420.yehicle.1
a 1	Carbon	https://m.mathworks.com/company/mathworks-stories/wheless-charging-tor-electric/ellicles.html:s_tid=stchttde_electric/020vellicle_1
L h	footprint	https://www.tatapower.com/sustainability/sustainability-initiatives/customer/calculate-carbon-footprints.aspx
U	calculator	https://www.tutupower.com/sustainability/sustainability/initiatives/customer/culculate/culculate/culculate/sustainability/sustaina
1	Importance of	https://www.indoasiancommodities.com/2022/03/03/kochi-airport-to-become-power-positive-with-its-new-solar-plant/
с	Power	
	positive	https://energy.economictimes.indiatimes.com/news/renewable/airport-in-kochi-to-become-power-positive-with-new-solar-plant-from- march-6/89882448
1	Transmission	
d	system details	http://www.tarang.website/welcome
	of India	
1	Vomatalia	
	state data	http://vidvutpravah.in/state-data/karnataka
C	(Power	
	details)	
1f	AT &C Loss %	
		https://www.uday.gov.in/home.php
1	National	
g	power portal	https://npp.gov.in/dashBoard/trans-map-dashboard
1	EV cost	
h	calculator	https://e-amrit.niti.gov.in/co2-calculator

1i	Design	https://careerfoundry.com/en/blog/uv-design/design-thinking-examples/
тJ	thinking	https://www.interaction_degign_org/literature/tenign/degign_thinking_examples/
	unnking	https://www.interaction-design.org/interature/topics/design-tinnking
		<u>nttps://www.appiliy.com.sg/blog/design-tninking-irom-empathy-to-end-product/</u>
		https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_012/9/09215/964288580_shared?collectionId=lex_auth_012/
		858770650972161567_shared&collectionType=Course&pathId=lex_auth_0128111895288627201003_shared
1	why is design	https://growthnatives.com/why-is-design-thinking-so-important/
k	thinking so	
	important?	
1	Examples of	https://careerfoundry.com/en/blog/ux-design/design-thinking-examples/
L	design	https://online.hbs.edu/blog/post/design-thinking-examples
	thinking	https://www.healing-power-of-art.org/positive-art-news-creativity-turns-scary-mri-scanner-for-kids-into-an-adventure/
	8	
1	Applying	http://innodigest.com/design-thinking-to-sustainable-energy/
M	Design	
	Thinking to	
	Sustainable	
	Enorgy	
	Energy	
1	Howcon	https://www.linkadin.com/pulse/how.con_design_thinking_help_utilities_prepare_new_energy_singh
L N	Design	https://www.hinkeum.com/pulse/now-can-design-umiking-neip-utilities-prepare-new-energy-singh
IN	Design Thisteries of holes	
	I ninking help	
	utilities	
	prepare for a	
	new energy	
	future?	
2	Electric	a.indiasmartgrid.org > reports > BESCOM EVCI Planning
	Vehicle	b. <u>https://e-amrit.niti.gov.in/standards-and-specifications</u>
	Charging	c. <u>https://deltaelectronicsindia.com/</u>
	Infrastructure	
	Planning and	
	Rollout for	
	Bengaluru	
	City,	
	Karnataka	

3	Choosing	https://www.carplug.eu/which-charging-cable-for-electric-car#courant_AC
	for Electric	
	car	
4	When to use	https://www.evplugincharge.com/blogs/when-to-use-ac-and-dc-charging-for-charge-electric-vehicle/blog-details
	ac and dc	
	charging to	
	charge ean	
	lectrivehiclesl	
	e?	
5	Types of	https://www.ev-resource.com/types-of-charging-and-charging-stations.html
	charging	
6	stations	
6	Handbook of	www.niti.gov.in > sites > default
	vehicle	
	charging	
	infrastructure	
	implementati	
	on	
7	Setting up an	https://evduniya.com/ev-india/charging-stations/how-to-setup-an-ev-charging-station-in-india.html
	EV Charging	
	station	
8	Minimum	https://electricvehicles.in/charging-infrastructure-guidelines-and-standards-for-electric-vehicles-released-by-indian-ministry-of-power/
	requirements	
	of public	
	charging	
0	Infrastructure	
9	Cost of Setting	https://e-vehicleinfo.com/charging-stations-in-india-cost-companies-franchise/
	up Electric	
	Charging Stations in	
	Judia	
10	Cost of	https://www.landingkart.com/blog/cost_estimates_o_ev_public_charging_station/
10	Setting up	וונוףס.// איא איגוכוונוווקגמו גרטווו/ טוטפ/ נטסר־פטנווומנפס-ט־פע־טטוונ־נוומו פווופ־טומו טווין
	Flectric	

	Charging	
	Stations in	
	India	
11	Government	powermin.gov.in > sites > default
	guidelines for	
	Setting EV	
	Charging	
	Stations	
12	Karnataka EV	https://e-vehicleinfo.com/karnataka-ev-policy/
	Policy	
13	Vehicle to grid	a) https://youtu.be/wHNFYMPFUv4
		b) https://www.youtube.com/watch?v=LFKKPy3LUVM
		c) https://youtu.be/QCYcsk40FLs
14	Vehicle to	https://youtu.be/Hcw0f1V2BRQ
	Home	
15	SUPERVISORY	https://nptel.ac.in/courses/108106022
	CONTROL	
	AND DATA	
	ACQUISITION	
	(SCADA)	
16	Difference	https://youtu.be/Ax1jTp2dl9M
	between PLC	
	and RTU	
17	Multifunction	http://www.icdipl.net/product/multifunction-transducer/
	transducer	
18	Intelligent	https://www.techtarget.com/whatis/definition/intelligent-electronic-device
	electronic	https://electronicscoach.com/intelligent-electronic-devices.html
	device	https://www.igrid-td.com/smartguide/gridandsubstationautomation/ied-intelligent-electronic-device/
19	Smart Grid	indiasmartgrid.org > reports > Smart Grid Handbook
	Handbook for	
	Regulators	
	and Policy	
	Makers	
20	Smart Grid	https://archive.nptel.ac.in/courses/108/107/108107113/
-----	------------------	---
20a	<u>The smart</u>	Clark W. Gellings
	grid: enabling	
	energy	
	efficiency and	
	<u>demand</u>	
	<u>response</u>	
20ł	Virtual tour	https://www.youtube.com/watch?v=ubNGhL4iUAU
	on smart grid	
21	Smart grid of	npti.gov.in > sites > default
	tomorrow	
22	Installation &	https://www.networkedenergy.com/en/smart-meter-installation-how-to
	testing of	
	smart meters	
23	Simulation of	https://www.youtube.com/watch?v=UvOJh534cok&t=544s
	simple smart	
	grid	
24	Introduction	a) https://www.geeksforgeeks.org/introduction-to-internet-of-things-iot-set-1/
	of IoT	
		b) https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_
0 7		01281271072738508814673shared?collectionId=lex_auth_0130944265535569922151_shared&collectionType=Course
25	loT	Internet of Things (IoT) Set 2 - GeeksforGeeks
	environment	
	for basic	
26	applications	
26	Introduction	nttps://www.nodemcu.com/index_en.html
27) https://ietdesignuus.com/projects/iet.head.cment.energy.meter.using.nedemon.com0266
27	101-Dased	a) https://lotdesignpro.com/projects/lot-based-smart-energy-meter-using-nodemcu-esp8266
	Smart Energy	b) https://lotdesignpro.com/projects/lot-based-smart-energy-meter
	FCDQ266	
	L3I 0200	
28	Automation	https://easyelectronicsproject.com/esp32-projects/esp8266-mgtt-home-automation-system/
	system to	

	control	
	appliances	
	from	
	anywhere	
	through the	
	internet	
29	Raspberry	https://analyticsindiamag.com/raspberry-pie-important-iot/
	pi	
30	IoT-based	https://circuitdigest.com/microcontroller-projects/iot-based-raspberry-pi-smart-energy-meter
	Smart Energy	
	Meter using	
	Rasberry pi	
31	Applying IoT	https://softengi.com/blog/iot-solutions-for-the-electric-power-industry/
	technologies	
	in the Electric	
	Power	
	Industry	
32	IoT-Based	https://www.researchgate.net/publication/360034488_IoT_Based_Energy_Management_System
	Energy	
	Management	
	System	
33	Benefits of	https:// -of-iot-in-energy-management/https://iot4beginners.com/application-of- f-things-energy-
а	Smart Energy	
	Management	
	using IoT	
33	HVDS	https://youtu.be/uQOfOWJsRKA
b		https://youtu.be/R52DAQVwjeE
34	Demand-side	https://www.mdpi.com/1996-1073/15/8/2863/html
	management	https://www.mepits.com/tutorial/447/electrical/demand-side-management-tutorial
		http://large.stanford.edu/courses/2010/ph240/malone1/
35	Demand-side	https://archive.nptel.ac.in/courses/109/106/109106161/
	management	
36	Agriculture	a) https://beeindia.gov.in/content/agriculture-dsm-0kredl.karnataka.gov.in > storage > pdf-files
	side Demand	b) http://agdsm.in/

	Side	
	Management	
	Management	
37	Municipal	https://beeindia.gov.in/content/municipal-dsm
0.	demand side	
	management	
38	Ongoing DSM	https://bescom.karnataka.gov.in/page/Departments+of+Corporate+Office/DSM/On+going+DSM+Projects/en
50	projects in	https://beseominarinatana.govini/page/bepartments.or.corporate.onice/boin/on-going.boin-riojeets/en
	Karnataka	
30	DSM	https://beeindia.gov.in/content/publications_0
57	measures by	https://beemala.gov.m/content/publications o
	Distribution	
	Companies	
4.0	Energy	https://beeindia.gov.in/sites/default/files/1Ch3.pdf
10	management	https://beendia.gov.m/sites/deladit/mes/rens.pur
	and audit	
<i>I</i> .1	EFSI (Energy	https://aaslindia.org/an/home/
TI	officiency	https://cesinicia.org/en/none/
	sorvices	
	Limited	
	Mohile Ann	
1.2	Introduction	https://beeindia.gov.in/sites/default/files/datacenterbook.pdf
74	to Data Centre	https://beenula.gov.m/sites/uelault/mes/ualacenterbook.pul
42	Substation	https://electrical-engineering-portal.com/substation-data-center#medium-voltage-switchgear
	equipment	https://oreentear engineering pertaileon/substation auta conter integration vorage switchgear
	needed to	
	nower un data	
	centre	
42	Cost of Data	https://www.cablinginstall.com/data-center/article/16465938/causes-and-costs-of-data-center-outages
	Center	
	Outages	
420	Modular/com	https://www.se.com/in/en/product-category/8000-uninterruptible-power-supply-ups/
	pact ups used	
	in Data	
	centers	

43	How to measure power quality? What devices should you use and what to measure?	https://electrical-engineering-portal.com/how-to-measure-power-quality
44	Power quality meters	a.https://new.siemens.com/us/en/products/energy/low-voltage/digital-power-monitoring/power-quality-meters-accessories.html <u>b. https://www.fluke.com/en-in/products/electrical-testing/power-quality</u>
45	Understandin g Importance of Power Quality in the Data Center	https://powerside.com/wp-content/uploads/2021/05/DCF-Special-Report-Power-Quality-in-the-Data-Center.pdf
46	Fail-safe bypass/isolati on switches	https://digitalcontentcenter.compas.siemens-info.com/RUS_WP_Fail-safe-vs-Maintenance-Bypass.pdf
47	Power Usage Effectiveness	https://www.digitalrealty.com/data-center-power
48	Recommende d practice for electrical preventative maintenance	https://www.munichre.com > renditions > original.PDF
49	Ways Data Centres Can Improve Energy Efficiency	https://www.facilitiesnet.com/datacenters/article/8-Ways-Data-Centers-Can-Improve-Energy-Efficiency19375
50	Data centre energy management	http://www.cei.washington.edu/research/energy-systems/data-center-energy-management/

51	Best practices	https://statemigration.com/best-practices-for-energyefficient-data-center-design/
	for energy	
	management	
52	Energy-	https://beeindia.gov.in > sites > default > files > data
	efficient	
	guideline and	
	best practices	
	in energy	
	management	
	in Indian data	
	cenrtres	
5	Data center	9AKK107991A1983_ABB-Whitepaper-DataCenter-Benefits-of-monitoring-and-diagnostic-solutions.pdf
3	case study 4	
5	Water	https://www.watercalculator.org/footprint/data-centers-water-use/
4	consumption	
	in data	
	centers	
5	Estimating a	https://www.insight.com/content/dam/insight/en_US/pdfs/apc/apc-estimating-data-centers-carbon-footprint.pdf
5	data center's	
	carbon	
	footprint	
5	Datacentres in	https://www.datacentermap.com/india/bangalore/
6	Bangalore	
5		https://www.seaenergy.in/post/bee-exam-practice-test-paper-1-1
7		

CIE Assessment	Assessment Mode	Duration In hours	Max Marks	
Week 3	CIE 1– Written and practice test	4	30	
Week 5	30			
Week 7 CIE 3- Written and practice test 4				
Week 9	CIE 4– Written and practice test	4	30	
Week 11	CIE 5– Written and practice test	4	30	
	On line Course work (Minimum 10 hours online course with certification from (SWAYAM/NPTEL/Infosys Springboard)		40	
	Profile building for Internship / Submission of Synopsys for project work		20	
Portfolio evaluation (Ba	sed on industrial assignments and weekly developmental assessment) st		30	
	TOTAL CIE MARKS (A)		240	
SEE 1 - Theory exam (QP from BTE) Conducted for 100 marks 3 hrs duration reduced to 60 marks 3				
SEE 2 – Practical 3				
TOTAL SEE MARKS (B)	160			
TOTAL MARKS (A+B)			400	

CIE and SEE Assessment Methodologies

* The industrial assignment shall be based on peer-to-peer assessment for a total of 10 marks (on a scale of 1 to 10) and in the event of a group assignment the marks

awarded will be the same for the entire group, the developmental assessment will be for a total of 20 marks and based on MCQ/case study/demonstration and such

other assignment methods

Assessment framework for CIE (1 to 5)

Note: Theory to be conducted for 1 hour and practice for 3 hours, total duration of exam – 4 hours

Programme		Electrical & Electronics Engineering	Semester		V	
Course		Power Engineering	Max Marks		30	
Course Code		20EE52I	Duration		4 hours	
Name of the	course coordinator					
Note: Answer	r one full question from eac	ch section.				
Qn.No		Question	CL	CO	PO	Marks
			L3/L4			
	I	Section-1 (Theory) – 10 marks				
1.a)	Classify EV charging infra	astructure with neat sketch.	L3	1	1	5
b)	What type of connectors	you recommend for a 4 wheeler for AC charging/DC charging	L3		1	5
2.a)	Which IEC standard define	nes different modes for EV charging and explain those charging modes	L3	-	1	10
	with a neat sketch.					
		Section-2 (Practical) - 20 marks				
3)a.	a. Identify components of a charging station and demonstrate its working.				2	10
b.	Identify different EV char	ging connectors		1	2	5
С.	Select the suitable charge	er for a given vehicle type power rating and voltage	ven vehicle type power rating and voltage L3			5

Note : Theory questions shall be aligned to practical questions

Assessment framework for SEE 1 (Theory)

Programme	: Elec	trical & Elect	ronics Eng	gineering						
Semester Course	: V · Power Engineering						Max Marks		100	
Course Code	ourse Code : 20EE52I						Duratio	n :	3 Hrs	
Instruction t	truction to the Candidate: Answer one full question from each section.									
Q.No	Question Section-1							CO	Marks	
						Section-1			•	
1.a)	How will yo	u apply desig	n thinking _l	process to in	stall EV chai	ging station in your institute?	L4		5	
b)	Differentiate	e between lev	el 1, Level 2	2 and Level 3	3 charging. S	elect suitable charging levels for Two	13		10	
	wheelers an	d Four wheel	er vehicle.	Select type of	connectors f	or only DC charging.	15		10	
c)	What do you	u think are the	e main barr	ier holding t	the commerc	cialization of high voltage high power	13		5	
	wireless pov	wer transfer (WPT) for E	V? Which IE	standard co	vers wireless power transfer?	15	1	5	
2.a)	Which charg	ging protocol	you sugges	t which prov	vides DC cha	rging standards for EV that ensures	I A	L	5	
	seamless communication between charging point and vehicle and justify your suggestion.						_	5		
b)	Can you charge EV vehicle by wireless power transfer methods? Justify your answer with neat sketch.What type of converters you suggest to be included in a DC charging station? Justify your answer with					L3		10		
c)						narging station? Justify your answer with	13		5	
	neat block d	iagram.					15		5	
						Section-2				
3.a)	A family bas	sed in Delhi is	planning t	to purchase	an electric fo	our-wheeler with a battery capacity of 45				
	kWh. It is ev	aluating whet	ther an EV i	metered con	nection is ec	onomical, considering that the alternative				
	is to use the	existing								
	Domestic el	ectricity conn	ection. The	e family's av	erage montl	nly electricity consumption from April to				
	September is about 380 units and its sanctioned load has headroom to meet an additional load of about					droom to meet an additional load of about				
	3 kW. What is the most economic option for the family?					13	2	10		
		- -					15	2	10	
	Energy ch	narges(₹/kWh) based on I	monthly con	sumption					
	0-200	201-400	401-800	801-1200	>1200					
	units	units	units	units	units					
	3.00	4.50	6.50	7.00	8.00					

	A domestic household connect shown in the table above. Delh charge. For the family's require state of charge. The monthly e approximately 216 units	ion in Delhi attracts energy i's EV tariff has an energy c ement, the EV needs to be c lectricity consumption from	ased on consumption slabs, as 4.50 per unit and no demand ery five days, from 20% to 100% ging thus comes out to				
b)	Suggest any device is to detect device in EV charging stations.	the fault current EV chargi	and how will you install such	L3		10	
4. a)	A CPO has identified a location kW chargers, three 7 kW char DISCOM, it is found that the ne beyond which its capacity wou 65 kW as the maximum sanc connections respectively.			10			
b)	What do think are the key chal support your answer with sket	infrastructure with the grid	L3		10		
	· · · ·	~ •	Section	1-3		•	
5. a)	Compute AT & C (Aggregate Te	chnical and Commercial) I	Losses for t	he following data:			
	S. No.Des1Input Energy = (Imp2aEnergy Billed (Metere2bEnergy Billed (Un-Met2cTotal Energy Billed3Amount Billed (Rs. lak4aGross Amount Collect4bArrears Collected (Rs.	cription ort-Export), MU d), MU ered), MU ths) ed (Rs. lakhs) lakhs)	Annual Data 11 7 1 8 450 460 40		L3	2	5
b)	Is Time of Day (TOD) Tariff is b And consumers? Justify your A	oeneficial for Utility nswer.			L3	3	7
c)	What is IED? Can it perform th communication protocol it sup	L3		8			
6. a)	Compare smart grid with conv	L3		5			
b)	Case: The CESC, Mysore Smart grid p Commercial, industrial and ag 14 feeders and 473 distribution functionality like Agriculture	L4		10			

	 employee portal for knowledge sharing and benefit realization, KPI based MIS and data analytics for decision support are also proposed. 19600 Single Phase meters, 548 three phase smart metrs, 453 DCUs, 318 DTMU, 5 FPIs and 130 HT modems installed. 16000 meters and 80 modems are communicating with Head End System. 500 RF pre-payment meters delivered. 494 installed and 300 of them commissioned. 200 RF Net meters delivered, 1 meter installed. 53 LT-CT meters installed. 1. What do you understand from the term "Agriculture DSM ". 2. What would be the likely benefits and outcomes from this Smart grid pilot project . 			
c)	Case study: MERC introduced reliability surcharge for withdrawal of load shedding. During 2006-07, in order avoid Load shedding in Pune City, the stranded/ surplus Captive Power Plant Capacity in and around Pune (about 90 MW) was used to mitigate the Load shedding. During the Load shedding hours, these Captive Plants (costly power) were put "ON" and load shedding in Pune city was avoided transforming Pune as the "Zero load Shedding" City. The charges for Captive Power (Costly power), used to mitigate the Load shedding, were being charged to all consumers in Pune city. The Domestic Consumers with consumption less than 300 Units/ month Were excluded from charging the Surcharge. All other Consumers in Pune City were levied Reliability Charge of Rs. 0.42 per Unit, which was in lieu of providing reliable supply to consumers (Zero Load shedding) What conclusions can you draw from the above case study	L4		5
	Section-4			
7.a)	An energy manager or energy auditor is trying to establish the power factor of a 15 HP induction motor. The instrument to measure electric parameters displays the three numbers 5 kW and 2 kVAr and PF = 92.8%. Do you fully agree with the instrument display and its correctness? OR Energy auditor is invited by an old textile mill to identify the scope of electricity savings in the distribution system. After, a visit to the mill substation, the auditor observes the following voltage distribution arrangement. In your view, what best option he would like to suggest to the management for its detail investigation. (Note: The detail technical and financial implications at this stage are not to be considered. Only concept to be mentioned)	L4	4	5

	Iron loss = 2.1 kW 11/3.3 kV Copper loss = 12.0 kW 1000 kVA Iron loss = 2.2 kW 3.3 / 0.433 Copper loss = 14 kW kV.1000 kVA 600 kW load		
b)	Suggest new method to ESCOMS to reduce distribution losses in your area. Perform cost benefit analysis for the project.	L3	10
c)	What is motor load survey? Suggest Energy Conservation Measures for the following		
	35 to 50% Load variation	L3	5
	> 50- 60% Loading		
8.a)	A 15 kW rated motor burns out. The financial manager of the firm wants to rewind the motor for Rs.3000 to save money. The Energy Manager wants to buy a new premium motor for Rs.20,000/- after selling motor for Rs. 5,000. He claims that he can save much more money in the next five years than the cost difference of the above two options. Other data is as under: Operating hours/year = 8000 Rewound motor efficiency = 89% New premium motor efficiency = 93% Motor loading = 75% Power cost = Rs.4/kWh (i) How much money does the energy manager actually save over 5 years and what is the simple payback period?	L3	10

	(ii) The financial manager claims the financial risk is still too high because operating hours may go down drastically in the next years. How many operating hours/year are required to recover the cost difference within 5 years.		
b)	 An energy auditor works out the percentage loading of a particular induction motor as a ratio of current drawn to the rated current of the motor. a) Do you agree with the above methodology adopted by the consultant? Justify your answer with reasons. b) In your opinion what is the right approach for working out the motor loading? 	L3	5
c)	Match the following load-shape objectives of any Demand Side Management (DSM) programme of a utility. i Peak Clipping ii Valley filling b Image: Clipping iii Valley filling b Image: Clipping iii Valley filling c Image: Clipping iii Load shifting c Image: Clipping v Load building e Image: Clipping	L3	5
	Section-5		
9.a)	Case : The company is an Indian telecom giant with an exclusive Datacentre catering to their internal needs. The organization conducted an energy study to look into opportunity-related cost reduction through	L4	10

	 Better energy management. The measured system power factor was 0.88 lagging for the average load of 1030 kW. The harmonic levels in the system were also measured with a power quality analyser. Answer the following questions. How will you improve the factor to 0.97? What are causes for poor power factor? Why harmonics are generated in Datacentre. How will you solve harmonics problem. What are likely benefits of improving power factor and minimising harmonics? 			
b)	What do you think are the key factors affects the carbon footprint of a datacentre, justify the answer with facts and figures.	L3		10
10.a)	 Case: The organization is a well-known software development company with international clientele. The Organization maintains a Datacentre which caters to the needs of various clients abroad. The company initiated various programmes for energy management and also conducted Power Quality and Energy audit. During the assessment of the UPS, the loading on the UPS system was found to be changing constantly. The change in loading pattern was due to Flexible operating hours of developers resulting in randomness of load A number of software development projects being worked upon For a maximum load of 200 kVA, four modules of 200 kVA UPS were installed in a 4 x 200 KVA configuration as shown in figure 2.27. Thus, even if the load equals 200 kVA, each UPS would be loaded to a maximum of 100 kVA to a maximum of 144 kVA at different times of a day, thus imposing loads of differing percentages on the UPS systems. The loading pattern observed for 	L4	5	10

	3. Suppose the efficiency of the UPS system was improved by 6.7%. What is likely		
	reduction of demand consumption?		
	4. What is the financial implication of your solution?		
b)	Suggest the substation equipment needed to power up the data centre, justify your answer with neat	12	10
	block diagram.	LS	10

Scheme of Evaluation for SEE 2

Sl. No	Description	Marks
1	Identify charging level , plugs , sockets and connector and associated charging protocols as per given requirements	10
2	Install, Commissioning and testing of EV station	30
3	Simulation exercise on EV/SCADA/smart grid/IOT OR Automate given system using IOT OR Install and Test smart energy meter	30
4	Measure and analyse power quality parameters using a power analyser for the any given load. Suggest remedial measures to mitigate power quality issues.	20
5	Energy audit report	05
6	Demonstrate the use of the energy audit instruments.	05
	Total	100

Sl. No.	Description of the equipment/ Hardware/ Software	Specification	Total Quantity Required (A)
1	Charging Station	Bharat AC-001, 3.3 kW Output Power	1
2	Charging Station	Bharat DC-001, 15 kW Output Power	1
3	Charging Station	Type 2 AC , 22 kW Output Power	1
4	Arduino Board		10
5	Raspberry PI		5
6	Smart Energy Meter	1ph and 3ph, LCD with pulse output	2
7	Digital Lux Meter		2
8	Infrared Thermometer		2
9	TDS meter		2
10	Power Quality analyser		2
11	SCADA lab kit	PUSPAC-RTU with field simulation bench IEC 60870-5-104 compliant Master/RTU simulator IEC 60870-5-101 - IEC 60870-5-104 protocol converter User friendly web based GUI Historical database management Flexible reporting system and trending Customized tag configuration Alarm/Event handling Can connect to IEC 60870-5-104 compliant RTU Can connect to IEC 60870-5-101 compliant RTU using "SMART ProGate"	1

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Program	Electrical & Electronics	Semester	5
	Engineering		
Course Code	20EE53I	Type of Course	Integrated
		L: T:P	104:52:312
Specialization	Renewable Energy	Credits	24
CIE Marks	240	SEE Marks	160

Introduction:

Renewable energy provides reliable power supplies and fuel diversification, which enhance energy security, lower the risk of fuel spills, and reduce the need for imported fuels. Renewable energy also helps conserve the nation's natural resources. Renewable energy is a term for clean, sustainable energy that's derived from naturally regenerating sources. Using a combination of these natural sources and intelligent technology, we can generate enough heat and electricity for all our homes, businesses, and production needs. This specialisation course is taught in Boot camp mode. Boot camp are 12 weeks, of intense learning sessions designed to prepare the student for practical world – ready for either industry or becoming an entrepreneur. Students will be assisted through the course, with development-based assessments to enable progressive learning.

Pre-requisite

Before the start of this specialisation course, the students shall have prerequisite knowledge gained in the first two years on the following subjects:

1st year – Engineering Mathematics, computer Aided Engineering Graphics, Fundamentals of Electrical and Electronics Engineering and Basics of Electrical power system, Communication Skills, Statistics & Analysis, Basic IT Skills, Project Management skills and Residential wiring.

2nd year- Transformers and Alternators, Transmission and Distribution, Switchgear and Protection, Analog and Digital Electronics, Electrical motors, Power Electronics, Fundamentals of Automation Technology ,and Computer-Aided Electrical Drawing.

In the third year of study, student shall be applying previous years learning along with specialised field of study into projects and real-world applications.

Course Cohort Owner

A Course Cohort Owner is a faculty from the core discipline, who is fully responsible for one specialized field of study and the cohort of students who have chosen to study that specialised field of study.

Guidelines for Cohort Owner

1. Each Specialized field of study is restricted to a Cohort of 20 students which could include students from other relevant programs.

- 2. One faculty from the Core Discipline shall be the Cohort Owner, who for teaching and learning in allied disciplines can work with faculty from other disciplines or industry experts.
- 3. The course shall be delivered in boot camp mode spanning over 12 weeks of study, weekly developmental assessments and culminating in a mini capstone.
- 4. The industry session shall be addressed by industry subject experts (in contact mode/online / recorded video mode) in the discipline only.
- 5. The cohort owner shall be responsible to identify experts from the relevant field and organize industry sessions as per schedule.
- 6. Cohort owner shall plan and accompany the cohort for any industrial visits.
- 7. Cohort owner shall maintain and document industrial assignments, weekly assessments, practices and mini-project.
- 8. The cohort owner shall coordinate with faculties across programs needed for their course to ensure seamless delivery as per time table
- The cohort owner along with classroom sessions can augment or use supplementally teaching and learning opportunities including good quality online courses available on platforms like Karnataka LMS, Infosys Springboard, NPTEL, Unacademy, SWAYAM, etc.

Course outcome:

CO1	Design and install a solar PV system.
CO2	Test, Commission, maintain, and monitor electrical and weather parameters for a solar PV system.
CO3	Install and test solar EV charging station.
CO4	Design and install small wind and biogas power plants.
COF	Perform feasibility study to suggest appropriate sustainable energy and energy
CU5	storage solutions for an educational institute/commercial building/industry.

On successful completion of the course, the students will be able to:

Detailed Course Plan

Week	C	P 0	Days	1 st session (9 am to 1 pm)	L	Τ	Р	2 ND session (1.30 pm to4.30 pm)	L	Т	Р
	0										
1	5	1,5	1	Introduction to Renewable energy Introduction to sustainability: -Meaning of sustainability -Components of sustainability Ref:1 6Rs of sustainability -Rethink, Refuse, Reduce, Reuse, Recycle, Repair -Examples -Seventeen Sustainable Development Goals? Ref:2 -Video demonstration 6Rs of sustainability	1		3	Decarbonization : -How Does Decarbonisation Work? -Why is Decarbonisation Important? -How do we Decarbonise? NetZero: -Meaning of NetZero, -Difference between NetZero and zero. Video demonstration of decarbonisation Sustainability Carbon footprint calculator: Ref:3 -Calculate your family's carbon footprint and analyze	1		2
	5	1,5	2	 Sustainable Manufacturing for India's Low-Carbon Transition Ref:4 Power Positive Ref:5 Video demonstration of Sustainable Manufacturing Video demonstration on Power Positive Agrovoltaics Advantages and disadvantages of agrovoltaic energy Applications of agrovoltaics Benefits of agrovoltaics Ref:8 	1		3	Global Energy scenario Indian Energy Scenario, Energy Policy Prepare table: (All India): Installed capacity for thermal, hydro, nuclear, and Renewable energy sources. Prepare table: (Karnataka): Installed capacity for thermal, hydro, nuclear, and Renewable. Ref:6a Electricity Price & Availability Ref: 6b Renewable Energy Sources:	1		2

	1,5	3	Design thinking What is design thinking? 5 steps of Design Thinking. Ref.7a.b	1		3	 -Hydro -Solar -Wind -Biomass -Hydrogen -Geothermal -Ocean The basic principle of working, its benefits and disadvantages. Video Demonstration of Renewable Energy technologies. Examples of design thinking Ref.7d,e,f 		3
			Why is design thinking so important? Ref.7c						
	1,5	4	Applying Design Thinking to Sustainable Energy Ref.7.i	1		3	How can 'Design Thinking' help utilities prepare for a new energy future? Ref.7.g Reinventing solar energy supply for rural Africa Ref.7.h.	1	2
		5	Developmental Assessment	-	-		Assessment Review and corrective action		3
		6	Industry Class + Assignment	2		3			I

2	1	1.5	1	Peer discussion on Industrial assignment.		4		Introduction to solar energy:	1	2
		, -						Solar Irradiance Concents:		
								DNI(Direct normal irradiance		
								J.		
								 Global horizontal radiance (GHI), 		
								 Diffuses horizontal radiation (DHI), 		
								 Relation between GHI, DNI and DHI. 		
l								• Global Tilted Irradiance (GTI).		
								Practice		
								Compass (Direction of solar		
								panel)		
								 Calculation of the angle. Lumon meter or Lux meter 		
								 Solar radiation measurement 		
l	1	1,5	2	Understand Terminology used in the Solar	2		2	Solar PV Systems	2	1
				Industry:				• Identify and understand the		
				Photovoltaic (PV) cell				working, advantages, and		
				Module				efficiency of different types of		
				Array				Solar PV Systems:		
				Balance of system,				-by configuration- Stand-alone, grid-		
				 Efficiency of solar panel 				tied, grid interactive, and hybrid		
				 Electrical (or electric or utility) grid 				-by deployment- Ground Mount,		
				Ground-mounted Solar				(Building-integrated		
				Interconnection agreement				nhotovoltaics) Ref.10		
				Mounting hardware				-hv appearance -Monocrystalline		
				Net metering				polycrystalline, thin-film		
				Uperations and maintenance Sub-shorts in (systematic)				(amorphous), Ref:12		
				Solar batteries (or storage)				Bifacial modules		
				Solar canoples				-Half-cut solar cell technology:		
				Solar carports				working and advantages		
				• Solar dealer						

			 Solar design Solar installer Solar panel cleaning Solar power plant Thin-film solar Solar Tracker Ref:9 Demonstrate the Manufacturing of solar cells. -Identify the different components of a Solar PV system and understand its basic operation 			- Current manufacturers of half-cut cells. Ref:11		
1	2,4,5	3	 Solar Panel Standard size and weight of the solar panel Demonstrate different types of solar panels. Specification of solar panel Ref:13 Terms used in solar panel Open Circuit Voltage (Voc). Short Circuit Current (Isc), Maximum Power Point (Pmax), Maximum Power Point Current (Impp), Nominal Voltage. Module efficiency Maximum operating voltage Maximum system Voltage Maximum series fuse rating Interpretation of datasheet of PV module. 	1	3	Solar Panel sizing Sizing of a solar panel for an application Ref:15 -Test a given solar panel Ref:15c		3
1	1,2,5	4	Solar BatteriesTypes of solar batteries:-Aadvantages, disadvantages, and applications.• Lead-acid batteries• Nickel cadmium batteries	2	2	Solar Batteries Battery Sizing Calculation: Ref:19 Battery sizing guidelines Ref:20 		3

		 Flow batteries Lithium-ion batteries C- and E- rates: Ref:16 Technical specification of batteries: Nominal Voltage (V) Cut-off Voltage Capacity or Nominal Capacity (Ah for a specific C-rate) Energy or Nominal Energy (Wh (for a specific C-rate)) Cycle Life (a number for a specific DOD) Specific Energy (Wh/kg) Specific Power (W/kg) Energy Density (Wh/L) Power Density (W/L) Maximum Continuous Discharge Current Maximum 30-sec Discharge Pulse Current Charge Voltage Float Voltage Charge Current Internal Resistance Battery Condition: State of Charge (SOC)(%) Depth of Discharge (DOD) (%) 			Test the condition of the given battery		
		 Charge Current Internal Resistance Battery Condition: State of Charge (SOC)(%) Depth of Discharge (DOD) (%) Terminal Voltage (V) 					
		 Open-circuit voltage (V) Internal Resistance Ref:17 Select a suitable battery for a given application: Ref:18 					
1	5	Developmental Assessment	-	-	Assessment Review and corrective action		3

			6	Industry Class + Assignment	2		3				
Week	C O	PO	Days	1 st session (9 am to 1 pm)	L	Т	Р	2 ND session (1.30 pm to4.30 pm)	L	Т	Р
3	1	2,5	1	Peer discussion on Industrial assignment.		4		 Solar panel in simulation How to use solar panels in simulation Ref:21 Simulation of Solar power generation for home using any software Ref:22 			3
	1	2,4,5	2	 Charge controllers: Types of charge controllers: PWM charge controller and MPPT Sizing of PWM and MPPT charge controller Efficiency of PWM and MPPT charge controller Specifications of PWM and MPTT charge controller. Ref:23 	2		2	 Charge Controllers Identification and testing of Charge controllers. Ref:23 Connect the charge controller (12V, 10A) with a Solar battery (12V, 100Ah), Solar panel (75,W) and DC load and test. Power Optimizer Ref:24 Demonstrate Power Optimizer installation and operation Specification 			3
	1	2,5	3	Connectors used in Solar module -MC4 connector: Ref:25 Wiring MC4 Equipped Modules in Series. Wiring MC4 Equipped Modules in Parallel. -MC4 Connector Specifications: Ref:26 -Solar branch connectors Ref:27	1		3	Wires and Cables Types of DC wire used in solar panels • PV wire • USE-2 Sizing of DC cable Ref:28 • Cable size between MPPT Controller and battery.	1		2

1	1,2,4,5	4	Solar Inverters Types of solar inverters • Centralized inverters • String inverters • Micro inverters • Inverter Architecture Choice Ref:29 • Specification of different types of Inverters • Demonstration of working of different types of Inverters • Grid-Tied Solar String Inverters • Specifications Sizing of solar inverter • Size a solar inverter for a given application Ref:29 • Selection of inverter for a given solar application Ref:29 • Solar PCU • Specification of solar PCU • Specification of solar PCU	2		2	 Selection of the current carrying capacity of PV string cables. Selection of the current carrying capacity of PV array cables. Determining Cable Sizes in an Off-grid PV. Ref:28 Mounting of Solar Panels Understand the different types, sizes, and specifications of foundations/ footings Identify the need of mounting structures Different types of mounting systems Advantages and disadvantages of the different mount structure. Ref:30 Selection of right footing/foundation Select the right footing/foundation as per site location including suitability of roof condition or suitability of soil Practice on mounting structures 	1	2
			Ref:29						
		5	CIE 1- Written and practice test	- 2	-	- 3	Assessment Review and corrective action		3
		U	muusu y Gass + Assignment	4		5			

Week	С О	РО	Days	1 st session (9am to 1 pm)	L	Τ	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
4	1	2,5	1	Peer discussion on Industrial assignment.		4		 Design of off-grid rooftop PV System for a residence/commercial building Calculate monthly load and the energy consumption of your home from the electricity bill. Calculate the requirement of total units/day for your home. Estimate the size of the PV system. Ref:31 			3
		3,5	2	 Design of off-grid rooftop PV System for a residence/commercial building Perform a site survey at rooftop area and prepare feasibility report including Inspection of field, Selection of site, Shadow analysis. Types of roofs, Weather monitoring. Solar path finder and sun path diagram. Wind Load conditions on Solar PV Panels like Wind Speed, Height of Panel above roof and Relative Location of Panels on roof. Create a rough layout of the rooms showing existing Grid meter line, MCB, nearest shaded & dry place for a solar PCU and place for panels. Prepare a layout of roof showing open areas and occupied areas and mark obstructions that can cause shadows. Take site photographs. Mark locations for components of solar PV electrical system on site. 	1		3	Selection of suitable PV system (standalone DC system/ standalone AC system/Grid tied PV system/Hybrid system) based on Load requirements – AC/DC Budget Existing form of supply System design : Module sizing and selection Battery sizing- Size the batteries and system voltage for the estimated PV system according to the required backup Size the charge controller for estimated battery system Select inverter, cable and conduit to match PV array: Sizing of inverters needed;	1		2

			 Data to be collected during site survey : Existing load and existing form of power supply. Location for placement of panel, battery, charge controller or PCU. Wire length from panel to battery and battery to load. Picture of site. Lay out of rooms, room type and floors. Available shadow free area. Measuring instruments required for site survey : Digital multimeter Compass AC/DC clamp meter Digital Luxmeter Power Guard meter 			 Size and select the cable and conduit. Select suitable Module mounting structure for the above PV system Select suitable protective devices. Select the other miscellaneous system components (Apply design thinking process) 		
1	3,5	3	 Design of off-grid rooftop PV System for a residence continued Prepare bill of material for above solar PV system and estimate the cost of installation. Calculate Payback period Calculate Carbon footprint Introduction to solar PV design software Design a PV system for the above residential/commercial building using any PV design software. 		4	Design 100 KW solar PV system and estimate cost of installation and prepare a quotation, manually /PV design software. • Calculate Payback period • Calculate Carbon footprint Ref:32 (Apply design thinking process)		3
1	4,5	4	Design and implement solar pumping system Ref:42a	1	3	Design and implement solar Street Light system Ref:39	1	2

				Design a PV system to operate a flour mill. Ref:42b				(Apply design thinking process)			
	1		5	Developmental Assessment	-	-		Assessment Review and corrective action			3
			6	Industry Class + Assignment	2		3				
Week	С О	РО	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
5	2	1,5	1	Peer discussion on Industrial assignment.		4		Simulate PV MPPT Ref:33	3		
	2	4,5	2	Simulate 3MW grid connected by PV system Ref:34			4	 Perform various measurements and tests pertaining to PV Modules and their installation as per IEC standards. Performance standards IEC 62125/61646 (Diagnostic, Electrical, Performance, Thermal, Irradiance, Environmental, Mechanical) IEC 61215 Safety Standards IEC 61730-1,2 (Electrical Hazards, Mechanical Hazards, Thermal Hazards, Fire Hazards) 	1		2
	2	4,5	3	 Preparation for Installation Measuring instrument required at the site: Digital multimeter AC/DC clamp meter Hydrometer Tools used for installation Wire strippers Wire climpers Wire pliers Screw drivers Spanners Socket wrench 	1		3	 Installing of PV components: Correct connection of batteries. Ventilation for batteries Connecting charge controller to battery ,panel and DC loads Connect solar power conditioning unit to battery bank Connect solar PCU to solar panel 			3

				Tester	Π		Connect solar DCII to AC loads		
							• Connect solar PC0 to AC loads		
				Drilling machine and drill bit					
				Hacksaw blade					
				Safety precautions:					
				Potential risks :					
				DC side wiring					
				AC side wiring					
				Battery					
				Personal safety					
				Installation of Solar panel					
				Stens for orienting of nanels					
				Constructing the mounting structure					
				 Identifying the footing 					
				• Identifying the looting					
				• Types of footing					
				Construction of mounting					
				Panel wiring					
				• Difference between AC and DC wiring					
				 Difference between AC and DC withing Earthing of papels 					
				Earthing of panels					
-	2	4 5	4	Blocking and bypass diodes		4	Testing of DV Medules		2
	2	4,5	4	nistanation and commissioning of Solar PV		4	resung of PV Modules		3
				piant			Carry out visual inspection of		
				(Do not quiteb (ON')			PV modules.		
				(DO HOL SWITCH UN J.			Measure Insulation resistance		
				Prepare a Unecklist for finding out			and Wet Leakage Current of		
				errors during above installation.					
				• Check as per the checklist and prepare a			Modules.		
				clearance certificate before			Ret:35		
				commissioning.			 Verify system grounding and 		
				Perform Procedural first switch ON,			measure insulation		
				observe No load test results and record.			resistance.		

	2			5	 Perform 'ON Load' test, progressively add load till full load and record observation. Perform Overload test and record observation Prepare a First inspection report on the solar plant installation. Prepare a list of Do's and Don'ts in the installation Prepare a report on Customer orientation Prepare a report on Visible and audio annunciations, alarms or alerts in a solar PCU. Perform shutting down procedure of the above solar plant Prepare a report on visible and audio annunciations, alarms or alerts in a solar PCU. Perform shutting down procedure of the above solar plant 				 F F S M I G F F F T Ref:3 M C a T T<th>Perform Bypass Diode test - Pmax at STC and Pmax at low rradiance. check continuity of the ystem and verify polarity. Measure Ground Continuity, mpulse Voltage, Reverse urrent and partial Discharge. Practice to undertake orecautions against Module oreakage. Demonstrate hot-spot on nodules through audio visual ids. 6 Measure DC voltages and urrents for each string and rray for proper operation of he system. Verify inverter operation ncluding anti-islanding performance and measure AC ystem values.</th><th></th><th></th><th></th><th></th>	Perform Bypass Diode test - Pmax at STC and Pmax at low rradiance. check continuity of the ystem and verify polarity. Measure Ground Continuity, mpulse Voltage, Reverse urrent and partial Discharge. Practice to undertake orecautions against Module oreakage. Demonstrate hot-spot on nodules through audio visual ids. 6 Measure DC voltages and urrents for each string and rray for proper operation of he system. Verify inverter operation ncluding anti-islanding performance and measure AC ystem values.				
	2			5	CIE 2- Written and practice test	-	-	-	Assessn	action				3
Maal-		DO	Derro	6	Industry Class + Assignment	2	-	3	D	2ND accession (1.20mm to 4.20) [T	т	D
Week	00	P0	Days		1 st session (9am to 1 pm)	L		ľ	Р	2^{ND} session (1.30pm to 4.30	pm)	L	Т	<u>Р</u>
6	Z	4,5	1	Pe	er discussion on industrial assignment.			4		 Maintain Solar Photovo System SOP (Standard Oper- Procedures) of PV sys Types of Maintenance 	ation tem.			3

						 (Preventive/Corrective/Condition Based). Electrical maintenance /Solar Panel maintenance/ Battery maintenance/ Charge Controller Maintenance. Maintenance record 		
-	2	4,5	2	 Maintain Solar Photovoltaic System Continued. Demonstrate Standard Operating Procedures of PV system. Demonstration of Solar Panel Maintenance: - Cleaning, Precautions While Cleaning DC Array Inspection Ref:37 	4	Maintain Solar Photovoltaic System Continued. Demonstrate Electrical Maintenance of Inverters/Cables/Junction Boxes, Fault Indications of Inverters/PCU.		3
	2	2,3	3	 Maintain Solar Photovoltaic System Continued. Demonstration of Battery Maintenance- Checking of Electrolyte Level, Specific Gravity Using Hydrometer, Physical Damage, Terminal Voltage, Cleaning of Battery Terminals. 	4	Maintain Solar Photovoltaic System • Inspection of Mounting Structure of Solar modules Procedure for replacement of defective Fixtures.		3
	2	4,5	4	Case Studies on solar PV plants Case study on 1MW PV solar system Ref:38 Case study of 2GW solar power plant at Pavagada solar park Ref:40 Power Evacuation Scheme -Allocation to ESCOMS from solar park Ref:41	4	 Solar Policies Central MNRE Solar policies (National Solar Mission, target 2030) State Solar and rooftop Policies, Solar Financing Economic Analysis of a Photovoltaic System: Energy economics basic concepts, unit cost of power generation from solar PV 	3	

								Payback period, LCC(life cycle costing) and benefit cost analysis.		
	Ζ		5	Developmental Assessment	-	-		Assessment Review and corrective action		3
			6	Industry Class + Assignment	2		3			
7	2	1,5	1	Peer discussion on Industrial assignment.		4		 Introduction to SCADA: What is SCADA? SCADA SYSTEMS Evolution of SCADA Objective of SCADA. Benefits of SCADA Functions of SCADA: SCADA APPLCIATIONS Real-Time Monitoring and Control using SCADA Ref:43 	2	1
	2	1,5	2	 SCADA HARDWARE: SCADA Hardware Functions, Remote Terminal Units (RTU): RTU Hardware: A typical single board RTU. Hardware functionality in an RTU, RTU Software functions Basic operation: RTU Standards. Difference between PLC and RTU Features of SCADA Ref:43 Intelligent Electronic Devices (IEDs) 	2		2	 SOFTWARE AND PROTOCOLS. ISO MODEL, DNP3 Protocol: Important Features of DNP3. IEC60870 PROTOCOL The two widely used protocols for SCADA Applications : HDLC (High Level Data Link Control) MODBUS The widely used open software for SCADA systems : Citect and Wonder ware. Ref:43 	2	1
	2	4,5	3	 Solar energy SCADA system Monitor inverter data 			4	Solar energy SCADA system Weather monitoring station Monitor radiation		3

	2	4,5	4	 Monitor power generation plant, sub plant and string level Ref:44 Solar energy SCADA system HT panel Incomer Relay data, Outgoing relay data, Incomer MFM's and Annunciator alarms and trip status. CIE 3- Written and practice test 	-		4	Ambient temperature Humidity Ref:44 FIELD VISIT Assessment Review and			3
			6	Industry Class + Assignment	2		3	corrective action			5
8	3	1,5	1	Peer discussion on Industrial assignment.		4		Necessity of Renewable Sources of Electricity to charge Electric Vehicles? Ref:49 Key Terminologies used in the EV Ecosystem: • Electric Vehicle (EV) • Battery Electric Vehicle (BEV) • Hybrid Electric Vehicle (HEV) • Plug-in Hybrid Electric Vehicle (PHEV) • Charging Station/ Electric vehicle Charging Station (EVCS) • Charging Point/ Electric Vehicle Supply Equipment (EVSE) • Charging Pool, Connector • Charge Point Operator (CPO). -Types of Electric vehicle, types of Engines -Stakeholders in EV Ecosystem Ref:50	2	1	

3	1,4,5	2	 Charging technologies for Electric Vehicles: Classification of EV charging technologies EV charging infrastructure classification Conductive (Plug-in/Wired) charging: Modes of Charging {IEC 61851 standard) Charging levels as per IEC 62196, IEC 61851 and SAE J1772 Comparison between charging levels Demonstrate (Video/physical) different EV charging technologies Demonstrate (Video/physical) different modes of charging Ref:50 Necessity of Power Converters for Charging Electric Cars from PV and wind? Ref:51 	2	2	 Technical Details of EV charger: Electric Vehicle battery charger components. Block diagram of on-board EV charger, Demonstrate (Video/ physical) of EV charger components Identify different EV charger components Identify different EV charger components Charging: Level 1, Level 2 and Level 3 charging Level 3 charging: Block diagram of DC charging station. Communication and power flow between EV and EVSE: DC charging station AC/DC converter and control DC charging station DC/DC converter and control 	1	2
3	1,4,5	3	 -Charging speed -Connector Types Type 1/Yazaki (SAE J1772, IEC 62196-1) Type 2 (IEC 62196-2) Combined Charging System (CCS 1) CHAdeMO Combined Charging System (CCS 2) GB/T DC Charger Tesla Supercharger Selection of charger for given vehicle type, power rating and voltage Ref 52 	2	2	 Solar charging stations for electric vehicles (EV's) On-Grid solar charging stations Off-Grid Solar charging station Components needed for a solar charging station Ref:53 How Many Solar Panels Does It Take to Charge an Electric Car? Ref:54 	2	1

				T d	 Identify different EV charging connectors. The Indian standards of charging connectors lerived from the international standards Bharat AC-001 Bharat DC 001 Selection of DC charger connector GB/T, CHAdeMO, CCS-1 and CSS-2 Selection sizing of Charger connector cable 					Tesla Model 3 Charging Costs vs. Utility Ref:55 • Demonstrate solar cl stations	s: Solar harging			
	5	4,5	4	F S F S	 Installing a Solar At-Home EV Charger Ref 56 Install and Test solar powered EV charging station Solar powered EV charging station Ref 59 GRTPV powered charging station Ref 57 	1		3		 Advantages of utilizing sources for EV chargi Cost comparative an RE based charging state Ref:50 Utilization of EVs for RE Grid Integration Ref 58 	ng RE ing. alysis of ations. better	1		2
			5		Developmental Assessment	-	-	-		Assessment Review and co action	orrective			3
			6		Industry Class + Assignment	2		3						
Week	CO	PO	D	ays	1 st session (9am to 1 pm)	L	Т	Р		2 ND session (1.30pm to 4.30pm)	L		Τ	Р
9	4	1,4,5	5	1	Peer discussion on Industrial assignment.		4		Win	 nd Energy Resources: Types of wind, wind profiling, turbulence, hill, and tunnel effect. Demonstrate Wind energy resources: Types of wind, wind profiling, turbulence, and hill and tunnel effect. Measure wind speed at different time period during day using 	1			2
						 anemometer and calculate wind pattern factor. Energy in the wind, energy production and simple problems Energy and Power, Energy Pattern factor, simple problems 								
---	-------	---	--	---	---	---	---	---						
4	1,5	2	 Wind Power Plant Classification of wind power plant Wind turbine classes. Study of parts of Wind power plant: Rotor nacelle, tower, High speed and low speed shafts, Gear box, Generator, Sensors and yaw drive, Power regulation and controlling units, Safety systems. Demonstrate working operation of each component of WPP 	3	1	 Wind Power Plant Wind energy conversion: Introduction Rotating principle. Drag and lift principle Force on rotor blade Factors affecting performance of rotor Simple problems Overview of Wind turbine Aerodynamics: Aerodynamic power regulation Stall controlled WPP Pitch controlled WPP Active controlled WPP Halting a WPP 	2	1						
4	1,3,5	3	Wind turbine generators:	3	1	• Haiting a WPP Small Wind Turbines:	1	2						
			 Limited variable speed generator Type1 Limited variable speed generator Type2 			IntroductionSmall Wind Turbine								
			Variable Speed with Partial Power Electronics conversion Type 2			Topologies								
			 Variable Speed with Full Power 			 Reed of SW 1, SW 1 classification 								
			Electronics Conversion Type4			Off-Grid SWT								
			Demonstrate working and operation of			On-grid SWT								
			each Wind turbine generators			 Applications of SWT 								

				Ref:45				Ref:46		
				Nell 15				 Design considerations 		
								of small wind turbing		
								I echnical specification		
								of small wind turbine		
								• Design a 1kw small		
							-	wind turbine		
	4	3,5	4		1		3	Perform a site survey at your		3
								location and prepare a		
								feasibility report including		
				• Estimate cost of a 1 VIN				Area availability		
				• Estimate cost of a 1 KW				 Wind speed 		
				norizoniai/vertical whiti turbine and				assessment		
				Prepare a quotation				 wind profiling 		
				• Simulate Wind power plant model				Demonstrate working		
				Ref:47				of Traffic powered		
								wind turbines Ref:48		
								 Case studies on wind 		
								turbing		
	4		5	CIE 4_ Written and practice test	-	_		Assessment Poview and		 3
	т		3	Cill 4- Written and practice test	_			corrective action		3
			6	Inductry Class + Assignment	2		2			
10	4	1 5	1	De en diamasian en la dustrial assignment	2	4	3	DIO ENEDCY	2	1
10	4	1,5	T	Peer discussion on industrial assignment.		4		BIUENERGY	Z	T
								BIO mass as fuel for		
								power generation		
								Technological options		
								to generate electricity		
								by using biomass as		
								fuel.		
								Combustion		
								Gasification		
								Demonstration		
								(Video/physical) of		
								Bioenergy		
								technologies.		

						 Biomass based power plants Installed in Karnataka 		
4	1,4,5	2	 Biomass feedstock Agri and forest residues. Industrial and domestic waste. Food and food processing. Waste, energy crops. Sewage water and landfills. Potential of Biomass: Energy (calorific value /hectare) Relation between calorific value and efficiency Biomass availability in Karnataka Ref 60 Demonstration on Biomass feedstock Case study on biomass energy Ref 60b 	2	2	 Biogas- Benefits of Biogas, Biogas Feedstock, Technology of Bio-gas production. Biogas plant components, types of biogas digesters and plants. Municipal Waste based Bio -gas plants- working, Advantages and disadvantages Size and Site Selection for Biogas plant Ref 61 Construct a simple model of 10kg waste biogas plant in your campus. (from the waste available in campus only) 	1	2
4	1,4,5	3	 Biofuels: Classification by generation Bioethanol Biodiesel sustainable aviation fuel (SAF) Renewable Natural Gas Renewable compressed natural gas (R-CNG) Liquified renewable natural gas (bio-LNG) Bioethanol Production 	2	2	 Extraction of oil form algal biomass for biodiesel Production Ref 62 Algal biofuel from urban wastewater in India : Ref 68 The Algae House: Generating Energy 	1	2

			 Application Demonstrate production of Bioethanol Ref 63 Renewable Natural Gas Production Application Ref 64 sustainable aviation fuel (SAF) Production of SAF Importance of SAF Saving of Carbon using SAF Ref 65 Biodiesel : Production Application Demonstrate production of Biodiesel : Production of Biodiesel : Ref 66 Algal biodiesel: the next generation biofuel for India Algal biomass production in tubular photobioreactor Innovative Approaches for improving algal biomass Yield 				from Living Algae on its Façade Ref 69 • Scope of IS 15607: Is standard for Biofuels Ref 70	
5	2,5	4	Feasibility study for a Biodiesel plant Ref:70			4	Design of 15 kW Micro Hydro Power Plant for Rural Electrification Ref:71 (Apply design thinking process)	3
		5	Developmental Assessment	-	-		Assessment Review and corrective action	3
		6	Industry Class + Assignment	2		3		

11	5	1,5	1	Peer discussion on Industrial assignment.		4		Introduction to Hydrogen Energy Hydrogen Production: Types of Electrolysers • Alkaline Electrolyser Polymer electrolyte membrane Ref 78 • Working of Solid oxide Electrolyser Ref 78 • Specification of Solid oxide Electrolyzer. Color-coding of hydrogen based on the source of production Ref 78 Demonstration of (video) various hydrogen production methods.	2	1
	5	1,4,5	2	 Hydrogen storage Hydrogen Transportation Production of Blue and Green Hydrogen Hydrogen End Use cost of Hydrogen production Ref 72 Demonstration of (video) hydrogen storage and transport 	2		2	 Hydrogen Generation by Anaerobic Digestion of Biomass. Demonstrate Hydrogen Generation by Anaerobic Digestion of Biomass. Ref 73 Generating green hydrogen from biomass Ref 79 	2	3
	5	1,5	3	 Utilization of Hydrogen gas Hydrogen as Alternate fuel for motor vehicles 	2		2	Design and simulate Fuel cell to produce power. Ref 76a.		2

Fuel cells
Types of fuel cells
Characteristics of fuel cells
Comparison among different fuel cells.
Ref:86
Hydrogen fuel cell
Working of hydrogen Fuel cell (Proton exchange membrane fuel cell)
Ref:87
Fuel Cell Electric Vehicle
Working of hydrogen engine Pof 74
The pros and cons of hydrogen-powered cars
for users
Ref 75
Hydrogen fuel cell cars: what you need to
know
Hydrogen Fuel Cell Bus
Ref 76
India's first Hydrogen fuel cell bus.
Ref 88a
Hydrogen powered Two wheeler.
Ref 88b
Application of fuel cell in Un manned
Aircraft(UAV)
• 600U HYDROGEN FUEL CELL
• 1200U HYDROGEN FUEL CELL
Ref 89
Hydrogen Trains Kei 90
Sarety and management
Causes of fires and preventive
management.
Demonstrate the preventive management.

	5	1,5	4	 Specification of Electrolyzer and Fuel Cell Test and Trouble shoot a Fuel cell Ref :76b Run a Small DC motor using Hydrogen fuel Cell. Ref 91 			4	 Hydrogen Technology Development in India Hydrogen initiatives of the ministry of petroleum & natural gas Ref 77a A Green Hydrogen Economy for India: Ref 77 b Demonstration of Hydrogen The Future of Hydrogen in India Current cost economics of green hydrogen production in India Future Price Trajectory of Green Hydrogen Most optimistic green hydrogen price trajectory Ref77c 	1	2
	5		5	CIE 5– Written and practice test	-	-	-	Assessment Review and corrective action		3
			6	Industry Class + Assignment	2		3			
12	5	1,5	1	Peer discussion on Industrial assignment.		4		 Concept of energy storage Classification of Storage Technologies. Different Technologies for Different Purposes. Comparison of Power Output (in watts) and Energy Consumption 	2	1

						 (in watt-hours) for Various Energy Storage Technologies Differentiating Characteristics of different Battery Technologies Present and Future Battery Technologies. Discharge Time and Energy-to-Power Ratio of Different Battery Technologies Ref 80 Demonstration of Different storage Technologies for Different Purposes. 		
5	1,5	2	 Components of a battery energy storage system (BESS) Schematic of a Utility-Scale Energy Storage System. Grid applications of battery energy storage systems. Technical requirements: Round-Trip Efficiency Response Time Lifetime and Cycling Sizing Frequency Regulation 	2	2	 Renewable Energy integration: Solar Photovoltaic Installation with a Storage System. Wind-power generation. Peak Shaving and Load Leveling: Use of Energy Storage Systems for Peak Shaving Use of Energy Storage Systems for Load Leveling Challenges of reducing carbon emissions: 	2	1

									I	Energy Storage Services and Emission Reduction Ref 81			
	5	1,4,5	3	• () • I • I • I • I • I	Gravity energy storage Characteristics Ref 82 Demonstrate Gravity energy storage ery recycling and re-use risks: Examples of Battery Reuse and Recycling Reuse of Electric Vehicle Batteries for Energy Storage Ref 83 Demonstrate Reuse of Electric Vehicle Batteries For Energy Storage	2		2	ſ	 Micro-grids What are micro-grids Need for micro-grid Benefits of micro-grids Ref 84 Micro-grid projects in India Green Hydrogen Microgrid Project Ref 84b Micro-grid projects in Karnataka Simulation of small scale micro grid Ref 85 	1	2	
	5	3,4,5	4	Perf sust for a build	orm feasibility study to suggest appropriate ainable energy and energy storage solutions n educational institute/commercial ding/industry1			4	H S S S E I I	Perform feasibility study to suggest appropriate sustainable energy and energy storage solutions for an educational institute/commercial building/industry2		3	
			5		Developmental Assessment	-	-			Assessment Review and		3	
			6		Industry Class + Assignment	2		3					
Week	C 0	PO)	Days	1 st session (9am to 1 pm)	L		T	Р	2 ND session (1.30pm to 4.30pm)	L	Г	Р
13	1,2,3,4,5	5 2,3,4	ł,5		Internship a) Secondary research on various industries and their operations to identify at least 3 companies along with the areas of work				4	Project a) Identification of the problem statement (from at least 3 known			3

interest and develop an internship plan that	problems) the students	
clearly highlights expectations from the	would like to work as	
industry during the internship.	part of the project –	
b) Design and develop a cover letter for an	either as provided by	
internship request to all 3 identified companies	faculty or as identified by	
and the resume to be submitted to potential	the student. Document	
companies.	the impact the project	
c) Prepare for an internship interview to	will have from a	
highlight your interests, areas of study, career	technical, social and	
aspirations and personnel competence –	business perspective.	
including the areas of learning you expect to	b) Design and develop the	
learn during internship	project solution or	
	methodology to be used	
	to solve at least one of the	
	problems identified.	
	Prepare a project plan that	
	will include a schedule, WBS,	
	Budget and known risks	
	along with strategies to	
	mitigate them to ensure the	
	project achieves the desired	
	outcome.	

References:

SI No	Description	
1	Introduction to sustainability	https://www.twi-global.com/technical-knowledge/faqs/faq-what-is- sustainability#WhyisitImportanttobeSustainable
2	Seventeen Sustainable Development Goals	https://sdgs.un.org/goals
3	Sustainability Carbon footprint calculator	<u>https://www.tatapower.com/sustainability/sustainability-initiatives/customer/calculate-carbon-</u> <u>footprints.aspx</u>
4	Sustainable Manufacturing for India's Low-Carbon Transition	https://www.ceew.in/publications/sustainable-manufacturing-indias-low-carbon-transition
5	Power-Positive	a. <u>https://www.indoasiancommodities.com/2022/03/03/kochi-airport-to-become-power-positive-with-its-new-solar-plant/</u>
		b. <u>https://energy.economictimes.indiatimes.com/news/renewable/airport-in-kochi-to-become-power-positive-</u> with-new-solar-plant-from-march-6/89882448
6	Prepare table: (Karnataka): Installed capacity for thermal, hydro, nuclear and Renewable. Electricity Price & Availability	a. <u>https://npp.gov.in/dashBoard/cp-map-dashboard</u> b. <u>https://www.vidyutpravah.in/</u>
7	Design thinking	a. <u>https://careerfoundry.com/en/blog/ux-design/design-thinking-examples/</u> b. <u>https://online.hbs.edu/blog/post/design-thinking-examples</u> c. <u>https://www.healing-power-of-art.org/positive-art-news-creativity-turns-scary-mri-scanner-for-kids-into-an- adventure/ Examples of design thinking d.<u>https://careerfoundry.com/en/blog/ux-design/design-thinking-examples/</u> e.<u>https://online.hbs.edu/blog/post/design-thinking-examples</u> f.<u>https://online.hbs.edu/blog/post/design-thinking-examples</u> f.<u>https://www.healing-power-of-art.org/positive-art-news-creativity-turns-scary-mri-scanner-for-kids-into-an- adventure/ g.https://www.linkedin.com/pulse/how-can-design-thinking-help-utilities-prepare-new-energy-singh h.https://thisisdesignthinking.net/2016/05/reinventing-solar-energy-supply-for-rural-africa/ i.http://innodigest.com/design-thinking-to-sustainable-energy/</u></u>
8	Agrovoltaics	a. <u>https://www.iberdrola.com/innovation/agrovoltaics</u> b. <u>https://agrovoltaic.org/solar-greenhouses/ c. https://agrovoltaic.org/ground-mounted/</u>

		d. https://agrovoltaic.org/elevated-photovoltaic-panels/
		e. https://agrovoltaic.org/benefits-of-agrovoltaics/
		<u>f. https://greencoast.org/agrivoltaics/</u>
9 T	Ferminology used in the Solar	https://us.sunpower.com/what-solar-energy-glossary-common-solar-terms
In	ndustry	
10 B	BIPV(Building-integrated	https://www.seia.org/initiatives/building-integrated-photovoltaics .
pl	photovoltaics	
11 H	Half cut solar cell technology	https://www.solarreviews.com/blog/half-cut-solar-cell-technology-explained#advantages
12 M	Monocrystalline, polycrystalline, thin	https://www.solarreviews.com/blog/pros-and-cons-of-monocrystalline-vs-polycrystalline-solar-panels#types-
fil	ilm	<u>of-solar-panels-performance</u>
13 Sp	Specification of solar panel	https://www.altestore.com/blog/2016/04/how-do-i-read-specifications-of-my-solar-panel/#.YjWCNOpBy3A
14 Pi	Product list	https://ae-solar.com/products-list/
15 So	Solar Panel sizing	a. <u>https://electrical-engineering-portal.com/download-center/electrical-ms-excel-spreadsheets</u>
		b <u>https://electrical-engineering-portal.com/download-center/electrical-software/calculate-size-of-solar-</u>
		<u>panel-battery-bank-inverter</u>
16 C-	C- and E- rates:	https://batteryuniversity.com/article/bu-402-what-is-c-rate
17 A	A Guide to Understanding Battery	http://web.mit.edu/evt/summary_battery_specifications.pdf
S	Specifications	
18 Se	Select a suitable battery for given	a. <u>https://www.dfrsolutions.com/blog/how-to-select-the-right-battery-for-your-application-part-1-battery-</u>
aj	application:	metric-considerations
		b. <u>https://www.dfrsolutions.com/hubfs/Blog_Images/secondary-battery-properties.jpg</u>
10 -		
19 B	Battery Sizing Calculation:	https://simpliphipower.com/company/news/blog/heres-a-crash-course-in-battery-system-
		sizing/#:~:text=The%20most%20important%20step%20when,be%20supported%20by%20the%20system.
20 Ba	Battery Sizing Guidelines	https://www.trojanbattery.com > pdf > TRJN0168.
21 so	olar panel in simulation	https://youtu.be/O9nhpdRBVX8
	-	
22 Si	Simulation of Solar power generation	https://youtu.be/cHYOQGiIQss
fo	or home using any software	
23 C	Charge controllers:	a. <u>https://www.renogy.com/learn-charge-controller-types/</u>
		b. https://sinovoltaics.com/learning-center/components/solar-charge-controllers-need-know/
		c. Identification of charge controller and its applications

		d. https://www.windynation.com/cm/Testing%20a%20Solar%20System R1.pdf					
24	Power Optimizer	https://www.solaredge.com/products/power-optimizers					
25	Connectors used in Solar module	https://fluxconnectivity.com/what-is-an-mc4-connector/					
26	MC4 Connector Specifications	https://www.solar-electric.com/learning-center/how-to-use-mc4-connectors-					
		cables.html/#:~:text=There%20are%20two%20different%20multibranch,MC4%20connector%20for%20its%					
		<u>20output</u>					
27	Solar branch connectors	https://www.leadergroup-cn.com/leader-connector/solar-branch-connector/2-in-1-t-branch-connector					
28	Sizing of DC cable	a. <u>https://www.windynation.com/jzv/inf/choosing-right-wire-size</u>					
		b. https://www.ppa.org.fj > uploads > 2020/10 > Det					
29	Solar Inverters	a.https://search.abb.com/library/Download.aspx?DocumentID=9AKK107492A3277&LanguageCode=en&Docu					
		mentPartId=&Action=Launch					
		b.https://search.abb.com/library/Download.aspx?DocumentID=9AKK107492A3277&LanguageCode=en&Docu					
		mentPartId=&Action=Launch					
		c. https://www.wikihow.com/Choose-a-Solar-Inverter					
		<u>d. www.temco.co.in</u>					
30	Mounting of Solar Panels	a. <u>https://greentumble.com/types-of-solar-panel-mounting-systems-and-their-installation/</u>					
		b. <u>https://www.e-education.psu.edu/ae868/node/913</u>					
		<u>c.https://www.altestore.com/diy-solar-resources/selecting-your-solar-module-mounting-structure/</u>					
31	Design of off-grid rooftop PV System	https://www.aurorasolar.com/blog/how-to-size-a-pv-system-from-an-electricity-bill/					
	for a residence/commercial building						
32	Design 100 KW solar PV system	https://www.researchgate.net/figure/Cost-and-bill-of-material-for-a-500-kWp-solar-PV-plant-with-solar-					
		smoother-and-battery_tbl6_323944719					
33	PV MPPT simulation	https://youtu.be/LMOmEppPS-Y					
34	3MW grid connected by PV system	https://youtu.be/ZXs_lg0daRc					
35	Measure Insulation resistance and	https://sinovoltaics.com/wet-leakage-current-testing/					
	Wet Leakage Current of PV Modules.						
36	Hot-spot on modules through audio	https://solarpost.in/om/solar-panel-hot-spot-causes-effects/					
	visual aids.						
37	Maintain Solar Photovoltaic System	https://mercomindia.com/robotic-cleaning-maximize-energy-yield/					
38	<u>Case study on solar system</u>	https://www.tatapowersolar.com/project/2-67-mw-solar-plant-carport-cochin-international-airport-ltd/					
		https://www.academia.edu/5449881/Design_and_Estimation_of_1MW_utility_Scale_Solar_PV_Power_Plant_Tec					
		hnical and Financial UPDATED					
39	Design and implement solar Street	https://www.engoplanet.com/single-post/2017/08/21/how-to-design-and-calculate-solar-street-light-system					
	Light system						

40	Case study of 2GW solar power plant at Pavagada solar park	https://www.power-technology.com/projects/pavagada-solar-park-karnata3ka/
41	Power Evacuation Scheme	https://kspdcl.karnataka.gov.in/english#
42	Design and implement solar pumping system and Flourmill	a.https://www.electricaltechnology.org/2020/09/design-solar-photovoltaic-powered-dc-water-pump.html b. <u>https://www.thebetterindia.com/293978/flour-mill-in-uttar-pradesh-pays-zero-electricity-bills-with-solar-panels/amp/#aoh=16601115246518&csi=0&referrer=https%3A%2F%2Fwww.google.com&_tf=From%20 %251%24s</u>
43	SCADA	https://nptel.ac.in/courses/108106022
44	Solar energy SCADA system	https://www.stability.co/centralized-scada-system-for-solar-power-plants/
45	Wind turbine generators	www.site.uottawa.ca > ELG4126WindGenerators
46	Small Wind Turbines	https://www.wind-energy-the-facts.org/markets-and-applications-for-small-wind-turbines.html
47	Simulate Wind power plant model	https://youtu.be/_5QEof5HXF8
48	Demonstrate working of Traffic powered wind turbines	 a. <u>https://www.goodnewsnetwork.org/onshore-wind-turbines-powered-by-traffic/</u> b. <u>https://www.shell.com/inside-energy/turbine-turns-traffic-into-energy.html</u> c. <u>https://highways.today/2020/04/09/highway-wind-turbines/</u> d. <u>https://www.euronews.com/green/2021/11/04/turning-traffic-into-clean-energy-how-this-startup-plans-to-power-the-streets-of-istanbul</u> e.www.osti.gov > biblio > 1225476-small-wind-site
49	Renewable Sources of Electricity to charge Electric Vehicles	https://e-vehicleinfo.com/charging-an-ev-using-renewable-energy-solar-wind/
50	Technical Details of EV charger	https://e-amrit.niti.gov.in/assets/admin/dist/img/new-fronend-img/report-pdf/Report1-Fundamentals- ofElectricVehicleChargingTechnology-and-its-Grid-Integration GIZ-IITB.pdf
51	Power Converters are needed for Charging Electric Cars from PV and wind?	https://e-vehicleinfo.com/charging-an-ev-using-renewable-energy-solar-wind/
52	Selection of charger for given vehicle type, power rating and voltage	https://e-amrit.niti.gov.in/standards-and-specifications
53	Solar charging stations for electric vehicles (EV's)	https://sinovoltaics.com/learning-center/electric-vehicles/solar-and-electric-vehicles-part-1/
54	How Many Solar Panels Does It Take to Charge an Electric Car?	https://www.solar.com/learn/how-many-solar-panels-does-it-take-to-fuel-an-electric-car/
55	Tesla Model 3 Charging Costs: Solar vs. Utility	https://www.solar.com/learn/cost-to-charge-a-tesla-model-3-with-solar-vs-socal-edison/
56	Installing a Solar At-Home EV Charger	a. <u>https://electriccitycorp.com/solar-ev-charging-station/</u> b. <u>https://www.buildwithrise.com/stories/how-to-set-up-a-home-solar-pv-system-to-power-an-electric-car</u>

57	SRTPV powered charging station	https://indiasmartgrid.org/reports/BESCOM%20EVCI%20Planning%20and%20Rollout%20for%20Bengaluru %20City,%20Karnataka.pdf
58	Utilization of EVs for better RE Grid Integration	https://indiasmartgrid.org/reports/BESCOM%20EVCI%20Planning%20and%20Rollout%20for%20Bengaluru %20City,%20Karnataka.pdf
59	Solar powered EV charging station	https://youtu.be/DR2yEf20wY4
60	Biomass availability in Karnataka	a. <u>https://karunadu.karnataka.gov.in/kerc/Reports/StudyOnTheSustainabilityOfBio-</u>
		massBasedPowerGenerationInKarnataka.pdf
		https://www.ijert.org/a-case-study-on-generation-of-biomass-energy-using-agriculture-residue
61	Size and Site Selection for Biogas plant	https://sobac.com/~stopthestink/guidelines for selecting suitable sites for biogas plants/
62	Extraction of oil form algal biomass for biodiesel Production	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152439/
63	Production of Bioethanol	https://youtu.be/A9BB-A2uc0I
64	Renewable Natural Gas	https://afdc.energy.gov/fuels/natural_gas_renewable.html
65	Sustainable aviation fuel (SAF)	a. <u>https://aviationbenefits.org/environmental-efficiency/climate-action/sustainable-aviation-fuel/producing-</u>
		sustainable-aviation-fuel/
		b. <u>https://simpleflying.com/rolls-royce-2-3-million-liters-saf/</u>
		b. <u>https://www.bp.com/en/global/air-bp/news-and-views/views/what-is-sustainable-aviation-fuel-saf-and-</u>
		<u>why-is-it-important.html</u>
66	Production of Biodiesel	https://youtu.be/xLa83KlaEyw
67	Algal Biodiesel	a. <u>https://www.energy.gov/eere/bioenergy/advanced-algal-systems</u>
		b. <u>nttps://www.researchgate.net/publication/2596//32/ Algai Biodiesei The next generation biofuel for Indi</u>
		<u>a/link/546406190cf2c0c6aec4fc00/download</u>
		<u>c. https://www.energy.gov/eere/bioenergy/advanced-algai-systems</u>
68	Algal Biofuel From Urban Wastewater	http://wgbis.ces.iisc.ernet.in/energy/paper/rser_algal_biofuel/introduction.htm
	In India	
69	The Algae House	https://www.rockwellautomation.com/en-in/company/news/case-studies/the-algae-housegenerating-
		energy-trom-living-algae-on-its-taca.html
70	Scope of IS 15607 : Is standard for	https://law.resource.org/pub/in/bis/S11/is.15607.2005.pdf
	Biofuels	a. <u>https://biodieseleducation.org/Literature/Journal/2006_Crockett_Feasibility_study_fo.pdf</u>
		D.nttps://gis.penndot.gov/BPK_PDF_FILES/Documents/Research/Complete%20Projects/Planning/Biodiesel%
F 4	Feasibility study for a Biodiesel plant	20Fuel%20Feasibility%20Study.pdf
/1	Design of 15 kW Micro Hydro Power	https://www.sciencedirect.com/science/article/p
	Plant for Rural Electrification	

72	Hydrogen storage	a.https://www.crowcon.com/blog/blue-hydrogen-an-overview/
		b.https://hvdrogen-central.com/india-reliance-industries-blue-hvdrogen-maker/
		c.https://www.msn.com/en-in/money/topstories/reliance-industries-aims-to-become-world-s-top-blue-
		hvdrogen-maker/ar-AATOxBv
		d.https://www.ndty.com/business/indian-oil-corp-forms-joint-ventures-for-green-hydrogen-electrolyser-
		2861409
		e.https://www.shell.com/energy-and-innovation/new-energies/hydrogen.html
		f. https://voutu.be/A0geo2-7. 3A
		g. <u>https://youtu.be/Bq4bZCq24Hg</u>
		h. <u>Harnessing-Green-Hydrogen_V21_DIGITAL_29_06.pdf (niti.gov.in)</u>
		i https://www.straitstimes.com/singanore/environment/new-25-million-research-institute-to-bring-
		green-hydrogen-from-lah-to-society
		j. <u>https://blog.forumias.com/national-hydrogen-energy-mission-nhem/</u>
73	Hydrogen Generation by Anaerobic	a. <u>http://www.sentientlabs.in/</u>
	Digestion of Biomass	b. https://edinburghsensors.com/news-and-events/using-anaerobic-biomass-digestion-produce-hydrogen- biofuel/
74	Fuel Cell Electric Vehicle	https://auto.economictimes.indiatimes.com/news/passenger-vehicle/cars/investment-in-hydrogen-fuel-falls-
		20-in-2020-fuel-cell-vehicle-demand-to-be-fragile/82575173
75	Hydrogen-powered cars	a. <u>https://www.bmw.com/en/innovation/how-hydrogen-fuel-cell-cars-work.html</u>
		b.https://www.fchea.org/transportation
76	Hydrogen Fuel Cell Bus	https://sentientlabs.in/
76a	Design and simulate Fuel cell	https://youtu.be/lbn_3ouUCwA
76b	Test and Trouble shoot Fuel cell	https://www.fuelcellstore.com/fuel-cell-stacks/low-power-fuel-cell-stack
77	A Green Hydrogen Economy for India:	a. https://mopng.gov.in/en/page/12
		b. <u>https://www.ceew.in/publications/reducing-green-hvdrogen-production-cost-in-india</u>
		c.Harnessing-Green- Hydrogen_V21_DIGITAL_29_06.pdf (niti.gov.in)
78	Introduction to hydrogen energy	https://www.sciencedirect.com/topics/engineering/electrolyzer
		https://www.bloomenergy.com/wp-content/uploads/Data-Sheet Bloom-Electrolyzer-10-MW UPDATED-6.24.22.pdf
		https://www.iberdrola.com/sustainability/electrolyzer
		Harnessing-Green- Hydrogen V21 DIGITAL 29 06.pdf (niti.gov.in)
79	Generating green hydrogen from	https://iisc.ac.in/events/generating-green-hydrogen-from-biomass-an-abundant-renewable-energy-source/
	biomass	

80	Hand book of energy storage	www.adb.org/sites/default/files/publication/479891/handbook-battery-energy-storage-system.pdf
81	Challenges of reducing carbon	www.adb.org/sites/default/files/publication/479891/handbook-battery-energy-storage-system.pdf
	emissions	
82	Gravity energy storage	a. <u>https://gravitricity.com/technology/</u>
		b. <u>https://www.eqmagpro.com/gravitricity-is-go-energy-storage-pioneer-commissions-demonstration-project/</u>
83	Battery recycling and reuse risks	www.adb.org/sites/default/files/publication/479891/handbook-battery-energy-storage-system.pdf
84	Micro-grids	a.https://www.weforum.org/agenda/2022/05/what-are-microgrids-renewable-power/
		b. https://www.ntpc.co.in/en/media/press-releases/details/ntpc-awards-india%E2%80%99s-first-green-
		<u>hydrogen-microgrid-project</u>
85	Simulation of small scale micro grid	https://youtu.be/800-t69bI-E
86	Fuel cells	https://new.abb.com/news/detail/31259/the-fuel-cell-a-green-powerhouse
87	Hydrogen fuel cell	https://fuelcellsworks.com/knowledge/technologies/pemfc/
		https://www.sciencebuddies.org/science-fair-projects/project-ideas/Energy_p002/energy-power/fuel-
		<u>cells#procedure</u>
88	Hydrogen fuel cell bus.	a. <u>https://indianexpress.com/article/technology/science/hydrogen-fuel-cell-electric-bus-8104087/</u>
	Hydrogen powered Two wheeler	b. <u>https://auto.hindustantimes.com/auto/two-wheelers/tesla-rival-triton-ev-to-launch-hydrogen-fuel-two-</u>
		wheelers-in-india-41658561332418.html
89	Application of fuel cell	https://aerospace.honeywell.com/us/en/learn/products/honeywell-hydrogen-fuel-cell
90	Hydrogen Trains	https://www.mobility.siemens.com/global/en/portfolio/rail/rolling-stock/commuter-and-regional-
		trains/hybrid-drive-systems/mireo-plus-h.html
91	Hydrogen fuel Cell.	https://www.sciencebuddies.org/science-fair-projects/project-ideas/Energy_p002/energy-power/fuel-
		<u>cells#procedure</u>
92	Infosys Springboard:	https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013267711536734208503/overview
	Course on Solar Energy Basics	

CIE Assessment	Assessment Mode	Duration In hours	Max Marks			
Week 3	CIE 1– Written and practice test	30				
Week 5	CIE 2– Written and practice test	30				
Week 7	Veek 7 CIE 3- Written and practice test 4					
Week 9	Week 9 CIE 4- Written and practice test 4					
Week 11	Week 11CIE 5- Written and practice test4					
	On line Course work (Minimum 10 hours online course with certification from (SWAYAM/NPTEL/Infosys Springboard)		40			
	Profile building for Internship / Submission of Synopsys for project work		20			
Portfolio evaluation (Ba	sed on industrial assignments and weekly developmental assessment) st		30			
	TOTAL CIE MARKS (A)		240			
SEE 1 - Theory exam (QP from BTE) Conducted for 100 marks 3 hrs duration reduced to 60 marks 3						
SEE 2 – Practical	100					
TOTAL SEE MARKS (B)	160					
TOTAL MARKS (A+B)			400			

CIE and SEE Assessment Methodologies

* The industrial assignment shall be based on peer-to-peer assessment for a total of 10 marks (on a scale of 1 to 10) and in the event of a group assignment the marks

awarded will be the same for the entire group, the developmental assessment will be for a total of 20 marks and based on MCQ/case study/demonstration and such

other assignment methods

Assessment framework for CIE (1 to 5)

Note: Theory to be conducted for 1 hour and practice for 3 hours, total duration of exam – 4 hours

Programm	me	Electrical & Electronics Engineering	Semester		V	
Course		Renewable Energy	Max Marks		30	
Course Co	ode	20EE53I	Duration		4 hours	
Name of the	he course coordinator					
Note: Answ	wer one full question from ea	ch section.	·			
Qn.No		Question	CL L3/L4	CO	РО	Marks
		Section-1 (Theory) – 10 marks		1		
1.a)	Select a suitable PV syste a. configuration, b. deployment c. solar panel with specif With proper justification	em for a domestic purpose to sell excess power to grid by ication 1.	L3	1	1	10
2.a)	Size the solar panel and	charge controller for 3kW solar PV system	L3		2	10
		Section-2 (Practical) - 20 marks				
1)a	Test the following for the 1. Solar panel 2. Charge controlle 3. Battery 4. Inverter	e good condition	L3	1	4	15
b.	Find out the following from 1. Voc 2. Isc 3. Pmax 4. Model Efficiency	om the given solar panel/datasheet	L3	1	1	5

Note : Theory questions shall be aligned to practical questions

Assessment framework for SEE 1 (Theory)

Programme	: E	Electrical &	Electroni	cs Ei	ngineer	ing							
Semester Course Course Code	: V : F : 2	/ Renewable 20EE53I	Energy								Max Marks Duration	: n :	100 3 Hrs
Instruction to the Candidate: Answer one full question from each section.													
Q.No						Qu	estion				CL	CO	Marks
	Section-1												
1	1 A house consists of the following load: Design an off-grid solar PV system. Identify main components, calculate panel wattage b. Number of modules in series -parallel combination. c. Battery sizing d. Charge controller rating e. cable wiring.												
	Floor	Room Type (kitchen, hall, garden, etc)	Load type (ex: motor, pump, etc)	AC or DC	Load Wattage (ex: 20W)	No. of applian ces	Hours of usage/ day	Usage Day or	mainly Night?				
	(Eg. Ground, firstetc)	(Provide room size for DC Lighting)						Day time usage	Night time usag e		L4		20
	Ground	Small room	1 LED light	DC	5 W	1	2 hours	1	1				
	Ground	Small room Small room	1 LED light	DC	2 W 4 W	1	4 hours 3 hours	1	2				
	Ground	Small room	Fan	DC	18 W	1	8 hours	4	4			1	
2.a)	Customer wants to buy charge controller for his 3kw rooftop PV system. what type of charge controller and its rating you recommend the customer . Justify your recommendation L3							L3		5			
b)	A solar p	banel has fol	lowing spe	CIFIC	ations								
	Voo	3	4	3.4	12V								
	Isc	1	4	.4	8A						L3		5
	Vmp)	3	5.8	32V								
	Imp	0	4	.2	6A								

	Calculate the peak capacity of the capacity of the panel and the energy generated considering the effective sunshine hours to be 5 hours.			
c)	Design a solar powered DC water pump where we need 50 m3 water per day from a depth of 20 m. It			
	has elevation, standing water level, and drawdown of 10 m, 10 m, and 4 m respectively.			
	Water density is 2000 kg/m3 and acceleration due to gravity (g) is 9.8 m ² /s. The peak power rating of	L4		10
	the solar module is 36 WP, as the modules do not operate at its rated peak power capacity, operating			
	factor is 0.75. The pump efficiency is around 40 % and the mismatch factor is 0.85 as the modules do			
	not operate at the maximum PowerPoint.			
	Section-2			
3.a)	Suggest troubleshooting procedures and corrective actions for Solar PV system for the following faults.			
	1. The system works but runs out of power too quickly	L4		15
	2. The system stops working			
	3. Power output is low			
b)	For solar plants capacity 2GW, how will you optimize operation and maintenance process .Suggest any	L4		5
	innovative method to increase cleaning cycle 24 to 365, to increase operational efficiency.			
4.a)	Management of thousands of solar panels on the field was a challenge. As the assets were being			
	managed manually, it required the investment of a lot of manpower. Hence the customer desired to		2	
	optimize and automate the tracking, monitoring and configuration activities of all the assets of the		Z	
	plant, including solar panels and various electric motors.			
	1. Why was the Current Method of Monitoring Assets not efficient?	L4		10
	2. What was required to overcome the Limitations of Manual Monitoring and Achieve the			-
	Desired outcome?			
	3. How to automate tracking, monitoring and configuration activities of all the assets of the solar			
	power plant.			
	4. List key highlights of your solution.			
b)	For 2 GW solar plant which communication protocol you recommend for SCADA. Justify your	L3		10
	recommendation. Can you suggest typical SCADA nardware and software required for the plant?			
	Section- 3			

5.a)	Differentiate between wheelers and Four w	n level 1, Level 2 and Level 3 charging. Select suitable charging levels for Two heeler vehicle. Select type connectors for only DC charging .	L3		10
b)	How Many Solar Pan	els does it take to Charge an Electric Car? Justify your answer with calculations	L4		5
c)	Compare charging co	osts Solar vs. Utility	L4		5
6.a)	Is Keeping RE source techno-economically	s and Battery energy storage systems (BESS) systems in EV charging stations feasible? Justify the statement with facts and figures	L4	3	10
b)					
	Can you Use EV for B	etter RE grid integration? Justify your answer	L4		10
		Section-4			
7.a)					
-)		KITTERY			
	Turbine Information				
	Model	Entegrity EW50			
	Capacity	50-kilowatts (kW) 177-m² swept area			
	Tower Height	125-ft lattice tower			
	Site Characteristics	· · · · · · · · · · · · · · · · · · ·			
	Elevation	~26.8 meters (m)			
		43.119/-70.749			
	Latitude/Longitude				
	Surrounding	Developed on the crest of a hill, above			
	Terrain/	some trees at the town transfer station			
	Obstacles	direction down by the river (see wind			
		rose B-6); trees are 70 ft high in the area			
			14	4	10
	Performance			1	10
	Estimate (kWh)	58,000 kilowatt-hours (kWh) annually ¹⁵			
	Actual (KWh)	of estimate)			
	Maintenance	Main brakes malfunctioned, locking the			
	Issues	blades in place			
	Current Operating Status	Turbine is still located at the transfer station, but does not currently generate energy ¹⁷			
	Study the above case	and answer the following questions.			
	1. Does the pres	sence of seventy-foot trees in the vicinity of the Kittery project has any effect of			
	wind turbine	performance?			
L		1	1	1	

	 In case of Kittery project what is not consi Does the presence of ground clutter in Kitt Does ground clutter influence a project's a What do you suggest to improve annual er 	dered in site-evaluation and selection. tery project affect life span of wind turbine? innual energy output? nergy output of wind turbine?						
b)	Calculate the power developed and speed in rpm following particulars. Rotor efficiency =40% Generator efficiency =70 % Rotor swept area =2.11 m ² Wind speed = 8.6 m/s Tip Speed Ratio =7 Radius of rotor = 0.82 m	L3		10				
8.a)	Sr.noSampleCalorific value(KCAL)Efficience Efficience1Straw3061.30472Cow dung3123463Sawdust3141.86454Cotton stick3770.23385Coal650022Study the above table which shows calorific values the following questions.1.Which samples are good enough to be used why2.What is the inference you draw from the a 3.3.Which sample suits best and which suits le reasoning.	s and efficiency for different samples and answer d in biomass power plant for power generation and bove table. east for biomass power generation with proper	L4		10			
b)	Discuss Innovative Approaches for improving algal	biomass Yield	L4		5			
c)	Discuss any one method of extraction of oil from a	algal biomass for biodiesel Production	L4		5			
	Section-5							
9.a)	Can we use green hydrogen on a massive scale? Ju	L4		5				
b)	Is a fuel cell vehicle the same as an electric vehicle	e? Justify your answer	L4		5			

c)	Name the device or process used to produce hydrogen. How will you produce hydrogen in cost- effective manner?	L4	5
d)	Suggest suitable storage solutions to store electrical energy generated 1MW floating solar PV system.	L4	5
10.a)	Is producing green hydrogen profitable at present? How can it made profitable in future, Suggest changes in technology to be made to make it profitable.	L4	5
b)	Is hydrogen a sustainable fuel? Justify your answer. OR What are the potential challenges for Green hydrogen?	L4	5
c)	 India's Largest integrated energy company has awarded project of "Stand alone Fuel cell based Microgrid with green hydrogen production using electrolyser at NTPC Simhadri. This will be India's first Green Hydrogen based Energy storage project and one of World largest. 1. Which type of Electrolyze would you think could be used in this project and its rating in KW 2. What is the source of Input power to Electrolyze. 3. How hydrogen energy could be stored in this project. 4. Draw a single line diagram of this microgrid project. 	L4	5
d)	How will you use design thinking process to setup hydrogen fuelling station in your city.	L4	5

Scheme of Evaluation for SEE 2

Sl. No	Description	Marks
1	Identify charging level, plugs, connectors, sockets as per given requirements	10
2	Design install, commission, test and trouble shoot solar PV system as per customer requirements.	40
3	Simulation exercise on solar/SCADA/wind/Fuel cell/micro grid	30
4	Feasibility study report to suggest appropriate sustainable energy and energy storage solutions for an educational institute/commercial building/industry.	10
5	Viva voce	10
	Total	100

Sl. No.	Particulars	Specification	Quantity
1	3kW offgrid rooftop solar PV system with Battery	3kW	1
	backup		
2	5kW ongrid rooftop solar PV system	5kW	1
3	Pyranometer		1
4	Solar Insulation meter		3
5	Rooftop Mounting Structure For 4 x 250 W solar		2 set
	panels mounting practice, with tilt adjustment		
6	Weather monitoring station	To monitor and record Sunshine, wind velocity, temperature, rainfall etc	1
		with software.	
7	Solar cell based sunlight radiation meter	For Solar power measurement up to 2000 w/square meter	1
8	Cut models of photo voltaic cell assembly		1
9	Cut model of Lead acid battery		1
10	Lead Acid battery	12V, 40Ah, 75Ah	5
11	Lead Acid battery	12V, 100 Ah	5
12	Solar simulator for solar cell characteristic study	To study IV curve of a solar cell of minimum 2 watt under variable	1
		illumination, temperature and suitable load	
13	Solar tracker demonstrator kit	To study manual and automatic control of 10 W solar panel in East-west	1
		and North-south &back	
14	Solar PV e-learning software using animations for		1
	training		
15	Lux meter	Lux meter LCD read out 0.05 to 7000 Lumens with battery.	1
16	Solar photovoltaic module	75 W mono crystalline module	2 each
		75 W amorphous silicon module	
		250 W thin film module 5W, 10W, 40W poly crystalline module	
17	Solar panels	250 Wp	5
18	Solar Charge controller with Dusk to Dawn automatic	12V, 10A	2
	switching		
19	Solar charge controller with manual switch	12V, 10A	2
	(Day lighting)		

20	Array junction box	for connecting 250W x 4 Nos. solar panel with DC fuse, DC MCB, and	2
24		surge suppressor protection	1
21	Solar lantern	LED type	1
22	Solar lantern	CFL type	1
23	Solar lantern assembly sets		1
24	Home light system	12 V DC with FM receiver, LED bulb and mobile charger as loads	1
25	Anemometer	for wind speed measurement	1
26	PWM Controller		1
27	MPPT Charge Controller		1
28	Inverter with Battery	1 KVA with 12 V Battery Input- 12 volt DC, Output- 220 volt AC	1
29	Solar PCU Off grid	1 KW MPPT Sine wave Solar Power Conditioning Unit	1
30	Solar Grid tied inverter Demonstrator kit	300W KW	1
31	Solar Street Light	12V, 75Ah battery, 75 Wp solar panel, 12V, 10A dusk to dawn charge	1
		controller, 60 W LED lights and 9 m height pole all dismountable	
32	Solar, wind and hybrid power plant	1 KW cumulative	1
33	solar DC pump	1 HP	1
34	1 Kw Wind Turbine	500 watts, For Domestic Purpose ; Power, 1 KW ; Blades Number, 6 ;	
		Efficiency, 80 ; Max Speed, 400 ; Start Up Wind Speed, 2.5.	
35	Wind mill kit(DIY kit)	1kw	
36	Small hydro turbine kit(DIY kit)	1kw	
37	Biogas Portable Kit	Plant Size: 1 Cubic Meter	01
		Waste Innut: 25 kg	
		Usage (Application: Domestic	
38	LIPS 5KVA	1 phase online ups input 240v + /-10 V ac 50 Hz 3	2
50		wire output: 5Kva 230v Reglation $\pm 1.2\%$ eff 80% charger mode should	-
		provide hattery of SMF or VRLA type backup of 4 hr at full load	
		functional test certificate insulation resistance and HV test load	
		regulation and transient response test efficiency regulse battery	
		capacity test uns functional test and spare pc's - cards test reports	
39	Fuel Cell	Double Reversible 5W Flectrolyser Mode: 10 cm ³ /min H2: 5 cm ³ /min	5
0,		02: 2.33 W. Fuel Cell Mode (02): 600 mW. Fuel Cell Mode (Air): 200	5
		mW H x W x D: $56 \times 42 \times 57$ mm Wt· 63σ	
		mw, m w x D. 30 x 12 x 37 mm, wt. 03 g	

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Program	Electrical & Electronics Engineering	Semester	5
Course Code	20EE54I	Type of	Integrated
		Course	104:52:312
		L:T:P	
Specialization	ELECTRICAL UTILITY ENGINEERING	Credits	24
CIE Marks	240	SEE Marks	160

Introduction:

The electrical power generated at the generating stations is utilized at the load end by various electrical utility equipment in the industries. Efficient utilization of electrical energy contributes to industrial growth and nation's economy. A good electrical wiring system and utility equipment are essential components for normal functioning of any type of industry. Poor design, installation, operation and maintenance of utility equipment would result in loss of electrical energy, frequent breakdowns and non-availability of service of the equipment. This course aims at developing technical skills in the students to operate, monitor, maintain and ensure healthy working condition of the most commonly used utility equipment in industries.

Pre-requisite

Before the start of this specialisation course, student shall have prerequisite knowledge gained in the first two years on the following subjects:

1st year – Engineering Mathematics, computer Aided Engineering Graphics, Fundamentals of Electrical and Electronics Engineering and Basics of Electrical power system, Communication Skills, Statistics & Analysis, Basic IT Skills, Project Management skills and Residential wiring.

2nd year- Transformers and Alternators, Transmission and Distribution, Switchgear and Protection, Analog and Digital electronics, Electrical motors, Power electronics, Fundamentals of Automation Technology and Computer Aided Electrical Drawing.

In the third year of study, student shall be applying previous years learning along with specialised field of study into projects and real-world applications.

Course Cohort Owner

A Course Cohort Owner is a faculty from the core discipline, who is fully responsible for one specialised field of study and the cohort of students who have chosen to study that specialised field of study.

Guidelines for Cohort Owner

- 1. Each Specialized field of study is restricted to a Cohort of 20 students which could include students from other relevant programs.
- 2. One faculty from the Core Discipline shall be the Cohort Owner, who for teaching and learning in allied disciplines can work with faculty from other disciplines or industry experts.
- 3. The course shall be delivered in boot camp mode spanning over 12 weeks of study, weekly developmental assessments and culminating in a mini capstone.
- 4. The industry session shall be addressed by industry subject experts (in contact mode/online / recorded video mode) in the discipline only.
- 5. The cohort owner shall be responsible to identify experts from the relevant field and organize industry session as per schedule.
- 6. Cohort owner shall plan and accompany the cohort for any industrial visits.
- 7. Cohort owner shall maintain and document industrial assignments, weekly assessments, practices and mini project.
- 8. The cohort owner shall coordinate with faculties across programs needed for their course to ensure seamless delivery as per time table
- 9. The cohort owner along with classroom sessions can augment or use supplemental teaching and learning opportunities including good quality online courses available on platforms like Karnataka LMS, Infosys Springboard, NPTEL, Unacademy, SWAYAM, etc.

Course outcome:

On successful completion of the course, the students will be able to:

C01	Perform routine checks on most commonly used electrical utility equipment and carry out maintenance work as per schedule.
CO2	Design electrical wiring system for commercial and industrial installations, Co-ordinate with consultants and contractors during implementation stages, Identify electrical faults in electrical wiring system and initiate repair work.
CO3	Design LT distribution panels as per IS and IEC standards, Generate BOM (Bill Of Materials), wire up, test and commission it. Read electrical control wiring drawings of AMF, MCC, APFC control panels, wire up and test the control panels.
CO4	Identify firefighting system equipment, select and operate the appropriate class of fire extinguishers, test for the normal working condition of electrical equipment related to the firefighting system. Identify STP, ETP and rainwater harvesting equipment, operate and maintain them.
C05	Install and test UPS system, computer LAN and CCTV surveillance. Select and interface smart meters to computer network. Operate EMS (Energy Management System) and Solar power generation monitoring software. Interpret the data from EMS.

Detailed course plan

Week	C 0	P O	Day	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Τ	Р
1	1,2,3,4,5	2,3,4	1	Introduction to types of industries-	4			Draw the layout of any large scale factory	1		2
				 Broad classification. 				showing - security room, entrance gate, exit			ł
				 Industry 4.0 concept. 				gate, parking, transformer substation, DG			
				 Introduction to most commonly 				power plant, LT room, UPS room, computer			
				used utility equipment in the				network server room, office, Engineering			
				industries.				department design department, purchase			
				 Meaning and Importance of utility 				heard room production line packing section			
				engineering and management.				dispatch section, fire hydrant numping station.			ł
				 Introduction to is, iet, Net - related standards and their 				solar power plant, rain water storage and			
				significance				pumping station , STP,ETP, earth pits etc.			ł
				 Introduction and Significance of 				Functions of each department.			1
				IE rules and ACT							1
				• Functions of -Central Electricity				Note: This would give an idea about overall			ł
				and State Electricity Authorities.				industrial setup and understanding of role of engineering department.			
				Introduction to various ISO							ł
				certifications and their significance –							
				• ISO 9001:2015- QMS (Quality							ł
				Management System),							
				 ISO 14001:2015- EMS- 							1
				Environment Management							1
				System,							
				• ISO 45001:2018-0HSMS-							
				Management system							
				 ISO 8000:2014 SA- Social 							
				Accountability.							1
				• ISO 27001:2013 - ISMS-							
				Information Security Management							
				System.							

			 Concept of TQM, Functions, Features, Elements and tools of TQM-kaizen, 5S and six sigma. Sustainability development goals. Industrial Electrical Safety Causes and prevention of electrical accidents. General safety practices. Precautions to be taken during electrical repair and maintenance work. Ref :2 					
2,3,4	1,2,3,4,5	2	 Electrical Maintenance Department- Objectives, Functions of maintenance department, Fundamentals of maintenance. Duties and Requirements, Maintenance records. Preparation of technical details for maintenance work, job card and log book. Machine History Card. Ref:2 Role of maintenance department as related to satisfying the requirements from various boards/departments essential for operating an industry- Fire and Safety, Pollution control board, BWSSB, BBMP, ESCOM, Electrical Inspectorate etc. 	4		Identify and demonstrate the use of industrial electrician tools and meters- basic tools, megger, earth tester, lux meter, db meter, thermography meter, smart meters with communication port.	1	2
	1,5	3	Design thinking What is design thinking? 5 steps of Design Thinking. Ref.7a.b	1	3	Examples of design thinking Ref.7d,e,f		3

				Why is design thinking so important? Ref.7c					
		1,5	4	Applying Design Thinking to Sustainable Energy Ref.7.i	1			3How can 'Design Thinking' help utilities1prepare for a new energy future?Ref.7.gReinventing solar energy supply for rural AfricaRef.7.h.	2
			5	Developmental Assessment	-	-		Assessment Review and corrective action	3
			6	Industry Class and assessment	2			3	
Week	C 0	P 0	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm) L T P	
2	1	2,3,4	1	Peer discussion on Industrial assignment		4		Sources of power supply in industries- ESCOM,21DG Set And On Grid Solar PV Power Plant.1Case study : Study the capacity of sources of power supply of anyone industry1	
	1	2,3,4	2	TRANSFORMER SUBSTATION- Types, Components of transformer substation. Selection of substation transformer capacity as per load requirements. Introduction to compact /packaged substation-construction. Name plate details of the transformer Selection of cable size of cables on primary and secondary side. Purpose of Spare incomer cable. List the accessories and fitments on a power transformer with their functions - WTI, OTI, OLI. Transformer neutral grounding and floating neutral and if effects. Preventive Maintenance of power transformer. Causes of transformer failure. Recommended maintenance schedule as per IS.	2		2	Familiarize with HT metering panel12switchgears, components and their function.Note down the specifications.1Note down the specifications.Transformer substation maintenance-0Do various periodic checks on transformersubstation. Tap changing (on/offload) and its1operation. Ref :1(Perform the experiment on disconnected1old transformer if available at the campus)11	

				Preventive Maintenance of transformer oil and breather. Minimum breakdown values of transformer oil. Ref:2 Transformer oil filtration.						
	1	2,3,4	3	DIESEL GENERATOR SET- various devices / accessories and their function, fuel system, lubrication system, exhaust system. select suitable capacity as per load requirements, daily, weekly and monthly checks. Demonstrate operation of AVR Automatic Voltage Regulator and Electronic governing system. Function of turbocharger, AMF panel- concept, components, Block diagram and operation	2		2	Carry out maintenance work on DG set- check radiator water level, engine oil level, battery condition, AVR (automatic voltage regulator). crank and check for normal working condition. Simple trouble shooting. Visit nearby industry with diesel power plant with at least 1000 KVA capacity.		3
	1	2,3,4	4	Auto Electrical System - Wiring diagram and its working. Testing of AVR Testing of batteries.	2		2	Connect and test AVR of DG set. Check the batteries condition and Conduct load test on batteries.		3
			5	Weekly Assessment	-	-	-	Assessment Review and corrective action	-	3
			6	Industry Class and assessment	2		3			
3	1	2,3,4	1	Peer discussion on Industrial assignment		4		SOLAR HYBRID POWER PLANT- Components of solar PV ON Grid power plant and their specifications. Difference between ON grid and OFF grid Solar PV power plant. Design of solar photo-voltaic on grid power plant, monitoring energy generation. Testing and maintenance of solar PV power plant.	1	2

	1	-	2,3	3,4	2	Design a solar photo-voltaic on-grid power plant for a given roof area- No of solar panels, wiring, metering and controls. Measure kWp power generation.	1		3	Case study: Visit any industry with ON grid Solar PV power plant and prepare a report. Setup a small solar standalone power unit, connect solar panel, MPPT controller, batteries, inverter and test it. Testing and maintenance work of solar panels.		3
	1,5)	Ζ,:	5,4	3	UPS, Sizing of UPS capacity, battery type and battery backup as per load requirement. Sizing of battery connecting cables/jumps. Trouble Shooting of 3 phase UPS system.	1		3	capacity, DC voltage and current ratings, connected load on UPS, Maintenance details and prepare a report on UPS system installed in that industry.		3
	1,5	5	2,3	3,4	4	Install and test any small capacity UPS system.			4	Install and test any small capacity UPS system.		3
					5	CIE 1- Written and practice test	-	-	-	Assessment Review and corrective action		3
					6	Industry Class + Assignment	2		3			
4	1,3	2,3	5,4	1	Pee	er discussion on Industrial assignment		4		LT DISTRIBUTION PANEL- Design a simple LT distribution panel as per load requirements consisting of metering section, indicators, digital meters-ammeter, voltmeter, trivector meter/multifunction meter, isolators, ct, busbar chamber, cable alley chamber, MCCB linked with ELR. Design factors to be considered, related IS standards. Draw SLD as per standard. Selection of power contactors, auxiliary contactors, protective devices, size of control circuit wire, power circuit wire, busbar rating, MCCB, Air Circuit Breaker. design factors to be considered Applicable standards.		3
	1,3	2,3	3,4	2	AC spri and	B (Air Circuit Breaker) with Motorized ing charging - Parts of ACB, control circuit its working.			4	Prepare GA diagram and SLD using CAD. Design metering section.	1	2

				 EXAMPLE : Design a main LT distribution panel for the following load requirements in a factory. Machineshop-10 HP load, Borewell pump-5HP x 2nos, Office with 20 computers, Office lighting – 1 kw, Floor lighting for 3 floors Street light in premises– 2 kw Painting section - 5 KW Lift – 5HP Estimate the cost of above LT panel. 				Selection of cables, wire sizes, switchgears and accessories. Automatic phase sequence corrector, SPP, OV, UV protection, ELR, Prepare Bill Of Materials with Specifications Note: standard sizes of lt panels with standard cuttings for meters, indicators, isolators, MCB,MCCB etc are available in the market. One may choose any LT distribution panel matching with their requirements, wireup and test it ref: Annexure		
		2,3,4	3	Mount the components on the panel			4	Wire-up the power circuit of LT panel and test		3
		2,3,4	4	Wire-up the control circuit of LT panel and test			4	Wire-up the control circuit of LT panel and test		3
			5	Developmental Assessment				Assessment Review and corrective action		3
			6	Industry Class:	2		3			
5	1,3	2,3,4	1	Peer discussion on Industrial assignment	-	4	-	CONTROL PANELS – Main types and their function-PCC, MCC, AMF, APFC, Design factors to be considered, Applicable IS and IEC standards. Study and read simple control panel drawings. List the control panel components. List control wiring accessories with their specifications. Preparation of ferrule numbers as per standard practice. Selection of control panel components, their ratings and wire sizes.	2	1

	1,3	2,3,4	2	Design a simple AMF panel- Prepare the GA diagram, SLD and control wiring drawings as per standard practice using CAD.	1		3	Design a simple AMF panel- Prepare the GA diagram, SLD and control wiring drawings as per standard practice using CAD.			3
	1,3	2,3,4	3	Design a simple AMF panel- Design the cubicle as per standards.	1	L	3	Design a simple AMF panel- select the switchgears and its ratings as per load requirement.			3
	1,3	2,3,4	4	Design a simple AMF panel- Generate the BOM.	1		3	Design a simple AMF panel- Generate the BOM.			3
			5	CIE 2- Written and practice test	-	-		Assessment Review and corrective action			3
			6	Industry Class:	2		3				
Week	C O	PO	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	P
6	1,3	2,3,4	1	Peer discussion on Industrial assignment		4		Design a simple AMF panel- Mount the switchgear and accessories			3
			2	Design a simple AMF panel- Mount the switchgear and accessories			4	Design a simple AMF panel- wire up the panel as per the electrical drawings			3
	1,3	2,3,4	3	Design a simple AMF panel- Wire up the panel as per the electrical drawings.			4	Design a simple AMF panel- Test the panel.			3
	1,3	2,3,4	4	Visit nearby industry and prepare a report on PCC, MCC, APFC panel, Fire hydrant pump control panel, STP and ETP control panel.			4	Visit nearby industry and prepare a report on PCC, MCC, APFC panel, Fire hydrant pump control panel, STP and ETP control panel.			3
			5	Developmental Assessment	-	-	-	Assessment Review and corrective action			3
			6	Industry Class:	2		3				
7	1,2	2,3,4	1	Peer discussion on Industrial assignment		4		INDUSTRIAL WIRING- Identify and list the industrial range electrician tools, cabling/wiring accessories. Note down the specifications.	1		2
	1,2	2,3,4	2	INDUSTRIAL WIRING-	1		3	INDUSTRIAL WIRING-	1	1	2
				Busbar trunking and rising mains, Design of LT distribution system for a given factory layout or an apartment per applicable standards.				Lighting – Design lux levels as per standards, Design energy efficient illumination for the given factory layout or an apartment, Design lighting circuit and its distribution board. Methods to reduce energy consumption towards lighting.			
---	-----	-------	---	--	---	---	---	--	---	---	
	1,2	2,3,4	3	Design the conduit layout for lighting circuit using cad as per standards.	1		3	3 Design the conduit layout for lighting circuit using CAD as per standards.		3	
	1,2	2,3,4	4	Prepare the BOM for lighting circuit.	1		3	Estimate the cost for industrial wiring for lighting circuit.		3	
			5	CIE 3 Written and practice test	-	-	-	Assessment Review and corrective action		3	
			6	Industry Class:	2		3				
8	1,2	2,3,4	1	Peer discussion on Industrial assignment	-	4	-	Power circuit- Design power circuit for power outlets as per requirement for the given factory layout. Design suitable distribution panels, select suitable size of cables, protective devices and switch gears. Applicable standards		3	
	1,2	2,3,4	2	Design the conduit layout/cable tray layout for power circuit using CAD as per standards.	1		3	Prepare the BOM for power circuit.	1	2	
	1,2	2,3,4	3	INDUSTRIAL PUMPS- Types and their application Select borewell pump for a given discharge and head. Identify types of valves and their applications.	1		3	Connect a 3 phase, 415 v, 3 ph bore well or open-well submersible pump with suitable starter. Interconnect 3ph starter and 3 phase automatic water level control. Manually simulate and test for normal operation Dis-assemble any one type of motor pump set, identify the parts, service, re-assemble and test		3	

	1,2	2,3	,4	4	Connect a 3 phase, 415 v ,3 ph. bore well open well submersible pump with suita starter. Interconnect 3ph starter and phase automatic water level contr manually simulate and test for norr operation Dis-assemble any one type of motor pur set, identify the parts, service, re-assem and test	or ble 3 rol. nal mp ble	1		3	Note: The above experiment setup shall be done indoor and tested.EARTHING SYSTEM in industries and its maintenance. Earth mats, Standard values. Testing and maintenance of earth pit, methods of reducing earth resistance, equipment earth, neutral earth, power circuit earthing, lightening arrestor earthing, Visit nearby industry and prepare a report on LT distribution system, lighting system.	1	2
		5			Developmental Assessment		-	-	-	Assessment Review and corrective action		3
		6	,		Industry Class:		2		3			
9	1,	2 2,:	3,4	1	Peer discussion on Industrial assignment		4		COM NET Com devie spec	MUNICATION AND COMPUTER WORK- puter network components / ces/accessories, list of materials and their ification.	1	2
	1,	2 2,;	3,4	2	COMMUNICATION AND COMPUTER NETWORK- Meaning of data communication and computer network, OSI layers, types of network and their applications, classification of network architectures, networking devices/components-workstation, Hub, Bridge, Repeater, switch, router, serverserver types , networking terminologiessubnet, internet, intranet, ethernet, bandwidth, IP address, TCP/IP, LAN, WAN,CAN,	2		2	Wire and Fibre work Crin RJ4	ed networking cables-category 3/5/6/6A/7 their standards and speeds. e optical cables- General construction, king and application. nping exercise- LAN network cable and 5 connector .	1	2

						WLAN,MAN,SAN, firewall, functions of router, network topologies and their application, Communication protocols and their applications- RS232, RS485, modbus, profibus and BACnet. Prepare the list of materials with specifications to set up a LAN for an office or a computer lab with 20 computers			
		1,2	2,3	3,4	3	Design and setup LAN for an office or computer lab with 20 computers. Select suitable network switch, cable. Connector and power supply. Connect, configure and test the LAN	1		3Design and setup LAN for an office or computer lab with 20 computers. Select suitable network switch, cable. Connector and power supply. Connect, configure and test the LAN3
		1,2	2,3	3,4	4	CCTV SURVELANCE- Types and applications, components / devices required and their specifications. Design CCTV surveillance system for a given layout of an industry, Select - DVR, NVR, type of camera, coaxial cable and display unit. Design conduit layout and cabling system. List the materials and estimate their cost	2		2 Connect DVR, Power Supply, Camera, Configure and Test CCTV by rigging up on the work table in the laboratory. 1 2
					5	CIE 4 Written and practice test	-	-	- Assessment Review and corrective action 3
					6	Industry Class:	2		3
10	1,2	2 2	,3,4		1	Peer discussion on Industrial assignment		4	LIFTS- Types, construction and working, major3components, type and specification of motor,essential spares, controllers operation and

						r r	maintenance. selection of lifts capacity as per requirement, and erection procedures.		
	1,2	2,3,4	2	 ESCALATORS- construction and working, major components, type and specification of motor, operation and maintenance. INDUSTRIAL OVERHEAD CRANES- construction and working, major components, type and specification of motor. Operation and maintenance. Controller, type of motor and specifications. 	2	2 () e s V f	General maintenance and servicing of lifts, escalators and cranes. simple trouble shooting Visit nearby industry and document the details found. Ref: 3	1	2
	1,2	2,3,4	3	HVAC EQUIPMENT- Block diagram, Main components, construction, operation and maintenance of centralized air conditioning plant ,chillers, AHU, FCU, blowers, compressors , condensers, cooling tower etc note down the specification of all the above components. Methods to reduce energy consumption towards HVAC.	2	2 V f	Visit nearby industry and document the details found.		3
	1,2	2,3,4	4	Visit nearby industry and document the details found.		 4 V f	Visit nearby industry and document the details found.		3
			5	Developmental Assessment			Assessment Review and corrective action		3
			6	Industry Class:	2	3			
11		1,2,4	2,3,4	1 Peer discussion on Industrial assignment		 4	- FIRE FIGHTING SYSTEM- Causes of fire, type and class of fire extinguishers their application. installation of smoke detectors, heat sensors, fire annunciation and alarm panel,	3	

								PA system, fire hydrant system-sprinklers, water curtain, water jet/spray,		
-	1,2,4	2,3,4	2	Selection of main pump, jockey pump. Starter control panel Select DG set capacity for fire hydrant pump as per requirements Operation and Maintenance. Draw the layout of fire hydrant system pump house for a given shopping complex or a factory layout.	2		2	Read the electrical drawings of the power circuit and control circuit of fire hydrant pumps. Draw the wiring layout of smoke detectors. Draw the wiring layout of PA system. Procedure for testing of fire hydrant system. Connect and test -smoke detector, heat sensor, fire console, PA system etc	1	2
	1,2,4	2,3,4	3	RAIN WATER HARVESTING SYSTEM- Components of rain water harvesting system. Pumping station- selection of pump. method of measuring rainfall , available rain water collection and storage. Design simple rain water harvesting system depending on the land area of the industry. List the materials required with their specification.	2		2	Visit nearby industry and prepare a report on the firefighting system and rain water harvesting system. Prepare a detailed report on volume of water collected during a year. Co-relate water consumption from bore well with and without rain water harvesting		3
-	1,2,4	2,3,4	4	STP AND ETP PLANT- Block diagram, construction and working. Components of STP and their functions. Components of ETP and their functions. Operation and Maintenance of STP and ETP	4			Visit nearby industry and study the operation and maintenance of STP and ETP. Co-relate amount of fresh water saved due to recycling the water. Prepare a report.		3
			5	CIE 5 Written and practice test	-	-		Assessment Review and corrective action		3
			6	Industry Class:	2		3			

12	1,5	2,3,4	1	Peer discussion on Industrial assignment	-	4	-	Energy Management System (EMS)- Energy flow in industries -General block diagram, Components and their functions. Building Automation System (BAS)/Building Management System (BMS)-General Block diagram ,Components and their functions. Merits and Demerits of BAS/BMS IOT- Components and their functions. Applications of IOT in industries.	3	
	1,5	2,3,4	2	Install any open source software, interface hard ware with software, read current, voltage, power, energy , power factor and display the energy generated by various sources in form of graph and pie chart	2		2	Install any open source software, interface hard ware with software, read current, voltage, power, energy , power factor and display the energy generated by various sources in form of graph and pie chart		3
	1,5	2,3,4	3	ENERGY MANAGEMENT – Meaning, need, Approaches and General principles. ENERGY AUDIT-Meaning, Types, Pre-requisites, methodology/procedure, scope of energy audit. Data collection and Data Analysis. General formats used for energy audit. Energy Management opportunities in industrial lighting and heating.	4			Note down the type, ratings of domestic appliance- electric iron, geyser, fan, food mixer, washing machine. Identify the type of motors used in domestic appliances.		3
	1,5		4	Conduct energy audit of home / college campus/any one industry Collect the details in a standard format. Compare energy consumption with energy bill. Suggest suitable remedies to reduce energy consumption and energy bill.	1		3	Introduction to AMC. (Annual Maintenance Contract) Need for AMC, Scope of AMC for major equipment like AMC for UPS system AMC for DG set AMC for HVAC AMC for Elevators		3

								Case study: visit near by industry , note down various AMC details and submit a report.			
			5	Developmental Assessment				Assessment Review and corrective action			3
			6	Industry Class:	2		3				
Week	C 0	PO	Days	1 st session (9am to 1 pm)	L	Т	Р	2 ND session (1.30pm to 4.30pm)	L	Т	Р
13	1,2,3,4,5	2,3,4		Internship a) Secondary research on various industries and their operations to identify at least 3 companies along with the areas of work interest and develop an internship plan that clearly highlights expectations from the industry during the internship. b) Design and develop a cover letter for an internship request to all 3 identified companies and the resume to be submitted to potential companies. c) Prepare for an internship interview to highlight your interests, areas of study, career aspirations and personnel competence – including the areas of learning you expect to learn during internship			4	 Project a) Identification of the problem statement (from at least 3 known problems) the students would like to work as part of the project – either as provided by faculty or as identified by the student. Document the impact the project will have from a technical, social and business perspective. b) Design and develop the project solution or methodology to be used to solve at least one of the problems identified. Prepare a project plan that will include a schedule, WBS, Budget and known risks along with strategies to mitigate them to ensure the project achieves the desired outcome. 			3

References:

Sl No	Description	Reference / Link
1	Building Electricals design	Electricity in buildings, GOOD PRACTICE GUIDE, International Copper Association India. – McGRawHill
2	Maintenance of electrical equipment	Installation Maintenance and Repair of Electrical Machines and Equipments by Madhvi Gupta- KATSON BOOKS.
3	Electrical system design	Electrical system design- T. Giridharan – wiley publication

Department of Collegiate & Technical Education Bengaluru-560001

4	Electrical Installation for Modern Buildings	Electrical Installation for Modern Buildings- M.P. krishna Pillai- Standard Publishers and Distributors <u>https://s3.ap-south-</u> 1 amazonaws.com/ainppc.org/downloads/T_5052_ENERGY_EEEICIENCY_IN_ELECTRICAL_UTILITIES_BO
		OK 03.pdf
5	Energy Efficiency in Electrical Utilities	https://mppolytechnic.ac.in/mp-staff/notes_upload_photo/CS595EnergyEfficiencyinElectricalUtilities- 5391.pdf
6	Electrical Power Distribution	Hand book of Electrical Power Distribution by Gorti Ramamurthy , Universities Press
7	Operation and maintenance of	Operation and maintenance of Transformers – hand book by H N S Gowda, published by H N S Gowda , No.
	Transformers	98, 7 th A main, 3 rd Block, 4 th stage Basaveshwaranagar, Bangalore 560079. Phone: 080-23203070
8	Electrician tools	https://www.youtube.com/watch?v=PAPPwrCPIqg
9	Design thinking	a. <u>https://careerfoundry.com/en/blog/ux-design/design-thinking-examples/</u> b. <u>https://online.hbs.edu/blog/post/design-thinking-examples</u> c. <u>https://www.healing-power-of-art.org/positive-art-news-creativity-turns-scary-mri-scanner-for-kids-</u> into-an-adventure/ Examples of design thinking d. <u>https://careerfoundry.com/en/blog/ux-design/design-thinking-examples/</u> e. <u>https://online.hbs.edu/blog/post/design-thinking-examples</u> f. <u>https://www.healing-power-of-art.org/positive-art-news-creativity-turns-scary-mri-scanner-for-kids-</u> into-an-adventure/ g.https://www.linkedin.com/pulse/how-can-design-thinking-help-utilities-prepare-new-energy-singh h. <u>https://thisisdesignthinking.net/2016/05/reinventing-solar-energy-supply-for-rural-africa/</u> i.http://innodigest.com/design-thinking-to-sustainable-energy/
10	Compact substation	https://www.youtube.com/watch?v=3Yo_g_WfQSs
11	Transformer substation SLD	https://www.youtube.com/watch?v=wlgcF4ynTB8
12	AVR wiring of DG set	https://www.youtube.com/watch?v=82BsoaVKKBw https://www.youtube.com/watch?v=3FCBovUH0-M
13	DG set governor	https://www.youtube.com/watch?v=TGpAH1W-0ss
14	DG set maintenance	https://www.youtube.com/watch?v=JCv_uR4FqHM https://www.youtube.com/watch?v=gZzBhXQjjY8

15	DG starting problem	https://www.youtube.com/watch?v=XwvPq_OWFjA
16	Automatic changer over switch for DG set	https://www.youtube.com/watch?v=PnlVNb2I524
17	Automatic change over switch	https://www.youtube.com/watch?v=-QjPInwErTE https://www.youtube.com/watch?v=-QjPInwErTE
18	Solar inverter connection diagram	https://www.youtube.com/watch?v=x-05gKrdg3U
19	Solar power calculation	https://www.youtube.com/watch?v=4WAgQ_19B5k
20	Solar grid tie system	https://www.youtube.com/watch?v=WuXcuQSToTE
21	Types of control panel	https://www.youtube.com/watch?v=tDhyy72peJ0
22	How to Read Electrical Diagrams	https://www.youtube.com/watch?y=GHhcyH99inE
23	How to Read Electrical Schematics	https://www.youtube.com/watch?v=Et-gHKTdziU
24	AMF panel	https://www.youtube.com/watch?v=X2fL8AV2fV4 https://www.youtube.com/watch?v=tidxKmtUBBE https://www.youtube.com/watch?v=4KvRnkuswD0 https://www.youtube.com/watch?v=0s5XBMfawIk
25	Contactor selection and sizing	https://www.youtube.com/watch?v=loIsoKQWjSY
26	Cable size calculation	https://www.youtube.com/watch?v=z7kArhBowxg
27	Different Types of Electrical Wires and Cables	https://www.electricaltechnology.org/2020/04/types-wires-cables.html
28	HVAC system	https://www.youtube.com/watch?v=iX4-06A7bJ8 https://www.youtube.com/watch?v=ScVBPAitibQ
29	Building Management system	https://www.youtube.com/watch?v=eoUha0APBJU https://www.youtube.com/watch?v=rgk7UdEWMpQ

30	Fire fighting hydraulics calculation	https://www.youtube.com/watch?v=QcM9dWpF1-c
31	Fire sprinklers	https://www.youtube.com/watch?v=_DjvcDCo-MA
		https://www.youtube.com/watch?v=Gmi1dTP4DMo
		https://www.youtube.com/watch?v=_yCllHMvQ_0
		https://www.youtube.com/watch?v=osyyLey5ipU
		https://www.youtube.com/watch?v=1wB8WkbaXpc
32	Fire alarm system	https://www.youtube.com/watch?v=cVjyDgFrb2g
33	Fire alarm panel	https://www.youtube.com/watch?v=ui3t0PnCPRo
		https://www.youtube.com/watch?v=rZ_2PjskrAM
		https://www.youtube.com/watch?v=xmNZUPIfebE
34	Smoke detector connection	https://www.youtube.com/watch?v=ORjybbBXxRQ
		https://www.youtube.com/watch?v=VpKydVGn_js
35	Fire detection panel	https://www.youtube.com/watch?v=3NhSNgT3LNA
		https://www.youtube.com/watch?v=s17FhnnwsA8
36	Classification of fire extinguishers and	https://www.youtube.com/watch?v=yzGe_8bvSE0
	classes of fire	
37	Fire Emergency Procedures	https://www.youtube.com/watch?v=7gHEtGY4chE
38	Fire prevention at work place	https://www.youtube.com/watch?v=ReL-DM9xhpI
39	How to use fire extinguishers	https://www.youtube.com/watch?v=PQV71INDaqY
40	Computer networking	https://www.youtube.com/hashtag/networkingbasics
		https://www.youtube.com/watch?v=1z0ULvg_pW8
41	Network cables	https://www.youtube.com/watch?v=_NX99ad2FUA
42	IP addressing	https://www.youtube.com/watch?v=ThdO9beHhpA
43	CCTV basics	https://www.youtube.com/watch?v=e3JZWDyG6Yk
44	CCTV wiring	https://www.youtube.com/watch?v=urrJ0PnIzc0
		https://www.youtube.com/watch?v=AQ1EPl_402w
45	RJ45 crimping	https://www.youtube.com/watch?v=SrdFw6Kunxo
46	Sewage treatment plant	https://www.youtube.com/watch?v=b0G8R2YfW5k
47	Cable tray sizing	https://www.youtube.com/watch?v=9PHN2zTNZT0
48	Electrical design for high rise buildings	https://www.youtube.com/watch?v=z6_7jpO8zPE

CIE Assessment	Assessment Mode	Duration In hours	Max Marks				
Week 3	CIE 1– Written and practice test	4	30				
Week 5	Week 5 CIE 2- Written and practice test						
Week 7	4	30					
Week 9	CIE 4– Written and practice test	4	30				
Week 11	CIE 5– Written and practice test	4	30				
	On line Course work (Minimum 10 hours online course with certification from (SWAYAM/NPTEL/Infosys Springboard)		40				
	Profile building for Internship / Submission of Synopsys for project work		20				
Portfolio evaluation (Ba	sed on industrial assignments and weekly developmental assessment) *		30				
	TOTAL CIE MARKS (A)		240				
SEE 1 - Theory exam (QP from BTE) Conducted for 100 marks 3 hrs duration reduced to 60 marks	3	60				
SEE 2 – Practical 3							
TOTAL SEE MARKS (B)							
TOTAL MARKS (A+B)	TOTAL MARKS (A+B)						

CIE and SEE Assessment Methodologies

* The industrial assignment shall be based on peer-to-peer assessment for a total of 10 marks (on a scale of 1 to 10) and in the event of a group assignment the marks awarded will be the same for the entire group, the developmental assessment will be for a total of 20 marks and based on MCQ/case study/demonstration and such other assignment methods

Assessment framework for CIE (1 to 5)

Note : Theory to be conducted for 1 hour and practice for 3 hours, total duration of exam – 4 hours

Programme		Electrical & Electronics Engineering	Semester			V	
Course		ELECTRICAL UTILITY ENGINEERING	Max Marl	Max Marks		30	
Course Code	9	20EE54I	Duration	Duration		4 hours	
Name of the	course coordinator						
Note: Angue	r one full question from ee	ab aaction					
Note: Answe	r one fun question from ea						
Qn.No		Question	CL L3/L4	CO	РО	Marks	
		Section-1 (Theory) – 10 marks					
1)	Design GA diagram of an	LT panel of factory with the following loads.	L3	1	3	10	
	Machineshop-3 p	hase, 10 HP load,					
	Borewell pump-3	3 phase 5HP x 2nos,					
	• Office with 20 co	mputers,					
	Office lighting – 1	kw,					
	Floor lighting for	3 floors					
	Street light in pre	emises– 2 kw					
	Painting section -	- 3phase 5 KW					
	• Lift –3 phase 5HF						
2)	Select a suitable transfor	mer for a factory with load of 150 HP and write its specifications	L4	1	1,2	10	
	1	Section-2 (Practical) - 20 marks	1	1			
3)	Conduct routine test on I	DG set and check for the normal working conditions of the DG set.	L3	1	4	20	
4)	Commission and test the	given UPS and batteries.	L3	1	4	20	
r	•			•	•		

Note : Theory questions shall be aligned to practical questions

Assessment framework for SEE 1 (Theory)

Programme Somostor	: Electrical & Electronics Engineering					
Course	: ELECTRICAL UTILITY ENGINEERING Max Mark	s:	100			
Course Code	: 20EE54I		Duration	: 3 Hrs		
Instruction	Instruction to the Candidate: Answer one full question from each section.					
Q.No	Question	CL	CO	Marks		
	Section-1					
1.a)	Select a suitable DG set for an apartment with the following load requirements.	L3	1	10		
	• Borewell pump – 3 HP x 2 Nos.					
	• Sump pump – 2 HP					
	• Lift – 5HP					
	Common Area lighting – 1 KW					
	• 12 houses each with 5 KVA load					
b)	List the causes for voltage fluctuation in a DG set.	L4		5		
c)	It was observed that all the 3 phase equipment in a factory like lifts , water pumps , lathes etc	L3		5		
	suddenly started malfunctioning after a maintenance job undertaken by the power supply company					
	on HT line. What could be the reason for malfunction of the equipment which were working properly					
2)	before maintenance work?	10		10		
2.a)	Select a suitable transformer for a factory with 150 HP load and writes its specifications.	L3		10		
b)	While checking a transformer, it is found that the breakdown voltage of its oil is 20 KV. What are the	L4		5		
,	corrective actions to be taken.					
c)	One particular phase of a 3 phase cable in a factory keeps burning often. On measuring the load	L3		5		
	current , it was found to be within the normal. range of the cable. On scanning the temperature using a					
	thermography meter, the temperature was found to be 75 degree centigrade. What could be the					
	reason for over heating up of the cable?					
	Section-2					
3.a)	Select a suitable starter for a 5 HP submersible borewell pump set and write its specifications	L3	2	10		

b)	On measuring the line current using of a 3 phase 10 HP induction motor it is observed that the current drawn is 20 A. What should the normal rated current of the motor and what should be the OLR setting on the starter.	L4		5	
c)	It is observed that a raw water pump motor switches ON but the starter trips after few seconds. While the motor windings, starter and wirings are found to be in good condition, On checking the 3 phase power supply using a neon tester, the neon tester glows on both incoming and outgoing sides of fuse units at LT panel end as well as Motor Starter end. What could be the reason for motor starter tripping	L4		5	
4)	Design illumination for a factory shed measuring 60 L x 15 W x 9 H. Select suitable type of light fitting , draw the arrangement of lighting points and conduit layout for wiring	L4		20	
	Section- 3				
5.a)	Design and draw the GA diagram of an LT panel for a factory with the following loads.		3	15	
	• Machineshop-10 HP load.				
	Borewell numn-5HP x 2nos				
	• Office with 20 computers				
	Office lighting 1 law				
	• Once lighting – 1 kw,				
	• Floor lighting for 3 floors				
	• Street light in premises- 2 kw				
	Painting section - 5 KW				
	• Lift – 5 HP				
b)	Draw the SLD for the above LT panel.	L3		5	
6.a)	Design and draw the control circuit of an AMF panel, label the parts and mark the ferrule numbers for the wires.	L3		15	
b)	Write the specification of ELR suitable for commercial building with 100 KVA load			5	
Section-4					
7.a)	Draw neat block diagram of STP and explain the maintenance carried out on STP.	L3	4	10	
b)	With a neat layout diagram explain fire hydrant system and its components.	L3		10	
8. a)	Explain various routine tests on firefighting system equipment.	L4		10	
b)	List the classes of fire and the type of fire extinguisher to be used on them.	L4		10	
Section-5					

Department of Collegiate & Technical Education Bengaluru-560001

9.a)	Design an LAN system for an office with 20 computers. List the components /	L3	5	10
	devices/cables/connectors etc required with their specifications.			
b)	Design an CCTV surveillance system for a factory premises to cover 10 zones including 2 outdoor/ open			10
	area zones. List the components/ devices/cables			
	/connectors etc required with their specifications.			
10.a)	Design UPS system for an office with 25 KVA load. Select the UPS capacity, type of UPS and batteries	L3		15
	for 3 hours backup.			
b)	It was observed that the UPS is not supplying the load during power failures.	L4		5
	List the possible causes and suggest suitable remedies.			

Scheme of Evaluation for SEE 2

Sl. No	Description	Marks
1	Demonstrate routine checks on DG set/ trouble shoot DG set electrical problems/transformer substation/Earthing system	
2	Test and Identify faults in electrical wiring system (conduct OC, SC and Insulation resistance test on the electrical installations)	
3	Reading of control wiring drawing and identifying control panel components/Demonstrate ferrule numbering as per standards	
4	Tracing and testing control wiring of LT control panel/AMF panel/APFC panel.	
5	Install and test – 3 phase Submersible pump starter with water level controller /UPS system/ CCTV/LAN/ fire alarm/annunciation panel a. Circuit diagram and Procedure= 15 b. Connection =25 c. Testing =10 Note : the above experiment may be setup on table and demonstrated	
6	Select appropriate fire extinguisher and operate / Demonstrate operation of firefighting control panel/ PA system/Alarm/Annunciation panel.	
Total		100

Sl. No.	Description of the equipment/ Hardware/ Software	Specification	Total Quantity Required (A)
1	Digital megger	1000 V	2
2	Digital earth tester	1000 V	2
3	Hand driven megger	2500 V	2
4	Hand driven earth tester	1000 V	2
5	Lux meter	Any Basic model	2
6	Sound level meter	Any Basic model	2
7	Thermography meter	Any Basic model	1
8	Hydraulic crimping tool	16 to 400 sqmm	2
9	LT Distribution panel with 200 A MCCB, ELCB, 200 A Isolator -4 nos,32 A TPMCB 2 Nos, 16 A DP MCB 4 Nos. Digital meters- Ammeter, Voltmeter, Multifunction meter	set	1
10	AMF panel with ACCL and meters	Basic features	1
11	APFC Panel with Capacitor bank	3 ph 6 KVAR	1
12	Fire hydrant pump control panel	5 HP	1
13	Fire alarm control panel	8 zones	1
14	Fire PA system	8 zones	1
15	CCTV demonstration set	4 channel DVR with power supply cameras etc	1
16	Computer Networking demo set	set	1
17	Network cable tester	Any Basic model	2
18	Miscellaneous items tool set, basic meters		2
19	Basic Industrial Tools, Meters-Thermography meter, Lux meter, DB meter, Megger, Earth tester, smart meters and PPE kit		
20	Solar PV standalone demonstration setup.	3kW	2
21	AVR and electronic governor of DG set		2

Equipment/Software list with Specification for a batch of 20 students

Department of Collegiate & Technical Education Bengaluru-560001

22	Any Small capacity UPS with batteries.	Upto 1 KVA capacity	2
23	Firefighting- smoke detector, Heat sensor, simple -PA system, Alarm console, fire hydrant pump control panel.		2